King Abdulaziz University
6FRQGSemester 2010-11

Math 110 Syllabus

Textbook: Calculus, early transcendentals, Sixth Editions (2008), Authors: James Stewart

		Lectures				
Chapter Title	Section Title	Subtitle	Examples	Exercises	HW	
Appendices	Appendix A (2 Lectures)	Numbers, Intervals, solving Inequalities, and Absolute Value. All of the content except example 9	1-8		$\begin{aligned} & 1,4,5,11,13, \\ & 19,27,29,49, \\ & 51,55 . \end{aligned}$	
	Appendix B (1.5 Lectures)	Coordinate Geometry and Lines. All of the content	1-8		$\begin{aligned} & 1,5,7,21,24, \\ & 27,31,32,33, \\ & 35,37,43,47 . \end{aligned}$	
	Appendix D (1.5 Lectures)	Trigonometry. Contents of pages: A24, A25, A26, A27 except example 5, A28. Just the graphs of the Trigonometric functions pages A30 and A31.	1-4		$\begin{aligned} & 1,5,7,11,17, \\ & 20,23,27,29 . \end{aligned}$	

		Lectures				
Chapter Title	Section Title	Subtitle	Examples	Exercises	HW	
Chapter 1 Functions and Models	1.1Four Ways to Represents of Functions (1 Lecture)	Representation of Functions, Piecewise Defined Functions, Symmetry, Increasing \& decreasing Functions	$\begin{gathered} 1-3, \\ 6,7,8,11 \end{gathered}$	1	$\begin{aligned} & 2,5,8,21,25,27,29,31,35, \\ & 41,44,45,50,62-66,70 \end{aligned}$	
	$\mathbf{1 . 2}$Mathematical Models (1 Lecture) (1 Lecture)	Polynomials, power, Rational , Algebraic, trigonometric, Exponential, logarithmic and transcendental functions	5,	2,4,8(f(x))	1,5,6,7,8,9	
	1.3 New functions from old functions (2 Lectures)	Transformation, combination of functions	1-3,5-9	1,6	$\begin{aligned} & 3-5,7,10,13,16,17,23,28 \\ & 29,32,35,39,41,46,49 \end{aligned}$	
	$\underset{\substack{\text { Exponential functions } \\(1 \text { Lecture })}}{ }$	The number e	1,3	1,14,17	5,8,10,15,18,29	
	$\mathbf{1 . 6}$Inverse functions and logarithms(2 Lectures)	Definitions, Logarithmic functions, natural logarithm, inverse trigonometric functions	1-13	25,26	$\begin{aligned} & \text { 5,6,10,11,16,17,18,21,22 } \\ & 27,29,33,35,38,45,48,49, \\ & 50,51,71,59-65 \end{aligned}$	

		Lectures				
Chapter Title	Section Title	Subtitle	Examples	Exercises	HW	
Chapter 4 Applications of Derivatives	4.1 Maximum and minimum values (2 Lectures)		1-9	27	$\begin{aligned} & 3,5,9,13,16,26,28, \\ & 34,36,37,38,42,44, \\ & 51,53,57,59,62 \end{aligned}$	
	4.2 The Mean Value Theorem (1 Lectures)		2, 3, 5, 6	5, 7, 23	$\begin{aligned} & 2,4,8,11,13,15,16, \\ & 17,20,24,25,32 \end{aligned}$	
	4.3 How Derivatives Affect the Shape of a Graph (2 Lectures)	What does $\mathrm{f}^{\prime}(\mathrm{x})$ say about $\mathrm{f}(\mathrm{x})$? What does $\mathrm{f}^{\prime \prime}(\mathrm{x})$ say about $\mathrm{f}(\mathrm{x})$?	1-8	7,32	$\begin{aligned} & 1,5,6,10,13,18,20, \\ & 24,31,33,45 \end{aligned}$	
	4.4 Intermeriate Forms and L'Hôpital's Rule (2 Lectures)	Indeterminate products, differences, powers	1-9	56	$\begin{aligned} & \hline 1,11,18,22,27,39, \\ & 50,51,54,60,61 \end{aligned}$	
	$\underset{\substack{\text { Summary of curve } \\ \text { sketching } \\ \text { (1 Lecture) }}}{ }$		1,5		9,14,19,25,37,50	

Note:

1. Instructor should cover all theoretical materials that related to the assigned examples.
2. All examples and exercises in the lectures part must be solved by the instructor.
3. All of the exams are Multiple Choices (MC).
4. Homework should be submitted online on or before the due date
5. Any student who misses $\mathbf{2 5 \%}$ of the class will receive DN.
6. No Calculator will be allowed in any exam.

Marks distribution

1. First Exam (90 Min; 30 Marks); Second Exam (90 Min; 30 Marks); Final Exam (120 Min; 40 Marks)
