Lecture 8

finding the moments about zero and moments about mean

1. moments about zero:

1 2 is the set of sample observations and x := 3 1 2

N := 5 is the no. of observations

as moment about zero is equal to E(x^r)

hence the rth moment about zero is
$$mz(r) := \frac{\sum_{i=0}^{N-1} (x_i)^r}{N}$$

h

r := 1..4

mz(r)	
1.8	
3.8	
9	
23	

2. Moment about mean

$$\min(r) := \frac{\sum_{i=0}^{N-1} (x_i - mz(1))^r}{N}$$

is the rth sample moment about mean

4

0

where mm(2) = 0.56is the sample variance mm(r) =r = $v := \sqrt{mm(2)}$ is standard deviation 1 0.56 2 0.144 3 0.579

skewness :=
$$\frac{mm(3)}{\frac{3}{2}}$$
 kurtosis := $\frac{mm(4)}{mm(2)^2}$

skewness = 0.344 there is a right and weak skewed

kurtosis = 1.847 the shape of distribution is thin

Moments for grouped data

1. Moments about zero

 $X := \begin{pmatrix} 5\\15\\25\\35 \end{pmatrix} \quad \text{are the sample categories and} \quad F := \begin{pmatrix} 4\\3\\7\\c \end{pmatrix} \quad \text{are the frequencies of each category}$

n := 3

hence the no. of observations equals to

$$\sum_{i=0}^{n} F_{i} = 20$$

r := 1..4

=		MZ(r) =	
1		22.5	
2		625	
2		1.886·10 ⁴	
J 1		5.946·10 ⁵	
4			

then the mean equal to MZ(1) = 22.5

2. Moments about Mean

$$MM(r) := \frac{\sum_{i=0}^{n} \left[\left[\left(X_{i} - MZ(1) \right)^{r} \right] \cdot F_{i} \right]}{\sum_{i=0}^{n} F_{i}}$$

is the rth sample moment about mean

where
$$MM(2) = 118.75$$
 is the sample variance

 $\chi_{\rm M} := \sqrt{\rm MM(2)}$ is standard deviation v = 10.897 v² = 118.75 is a variance

MM(r) =		
	0	
118.	75	
-543.	75	
2.657.1	04	

skewness:=
$$\frac{MM(3)}{\frac{3}{MM(2)^2}}$$

kurtosis:=
$$\frac{MM(4)}{MM(2)^2}$$

skewness = -0.42 there is a left and weak skewed kurtosis = 1.884 the shape of distribution is thin