Lecture 8

finding the moments about zero and moments about mean

1. moments about zero:
$\mathrm{x}:=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 1 \\ 2\end{array}\right)$ is the set of sample observations and
$\mathrm{N}:=5$ is the no. of observations
as moment about zero is equal to $E\left(x^{r}\right)$
hence the rth moment about zero is

$$
m(x):=\frac{\sum_{i=0}^{N-1}\left(x_{i}\right)^{r}}{N}
$$

$\mathrm{r}:=1 . .4$
$\mathrm{mzr})=$

1.8
3.8
9
23

2. Moment about mean

$$
:=\frac{\sum_{i=0}^{N-1}\left(x_{i}-m \neq(1)\right)^{r}}{N}
$$

where $\operatorname{mm}(2)=0.56 \quad$ is the sample variance $\mathrm{v}:=\sqrt{\mathrm{mm}(2)} \quad$ is standard deviation

$\mathrm{r}=$	$\mathrm{mm}(\mathrm{r})=$
1	2 2 3 4
0.56	
0.144	
0.579	

$$
\text { skewness }:=\frac{\operatorname{mm}(3)}{\operatorname{mm}(2)^{\frac{3}{2}}} \quad \text { kurtosis }:=\frac{\operatorname{mm}(4)}{\operatorname{mm}(2)^{2}}
$$

skewness $=0.344$ there is a right and weak skewed
kurtosis $=1.847$ the shape of distribution is thin

Moments for grouped data

1. Moments about zero

$$
\begin{aligned}
& X:\left(\begin{array}{c}
5 \\
15 \\
25 \\
35
\end{array}\right) \quad \text { are the sample categories and } \quad \underset{\text { FM }}{\mathrm{F}}:=\left(\begin{array}{l}
4 \\
3 \\
7 \\
6
\end{array}\right) \quad \begin{array}{l}
\text { are the frequencies of } \\
\text { each category }
\end{array} \\
& \mathrm{n}:=3 \\
& \text { hence the no. of observations equals to } \quad \sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{~F}_{\mathrm{i}}=20
\end{aligned}
$$

$$
\operatorname{MZ}(\mathrm{r}):=\frac{\sum_{i=0}^{n}\left[\left(X_{i}\right)^{r} F_{i}\right]}{\sum_{i=0}^{n} F_{i}}
$$

$\mathrm{r}:=1 . .4$
$\mathrm{r}=$

1
2
3
4

$\mathrm{MZ}(\mathrm{r})=$
is the rth sample moment about mean

22.5
625
$1.886 \cdot 10^{4}$
$5.946 \cdot 10^{5}$

2. Moments about Mean

$$
\operatorname{MM}(\mathrm{r}):=\frac{\left.\left.\sum_{\mathrm{i}=0}^{\mathrm{n}} \llbracket\left(\mathrm{X}_{\mathrm{i}}-\mathrm{MZ}(1)\right)^{\mathrm{r}}\right] \cdot \mathrm{~F}_{\mathrm{i}}\right]}{\sum_{\mathrm{i}=0}^{n} \mathrm{~F}_{\mathrm{i}}}
$$

where $\quad \mathrm{MM}(2)=118.75$ is the sample variance

$$
\begin{aligned}
& \underset{\sim M}{\mathrm{v}}:=\sqrt{\mathrm{MM}(2)} \quad \text { is standard deviation } \\
& \mathrm{v}=10.897 \\
& \mathrm{v}^{2}=118.75 \text { is a variance } \\
& \text { MM(r) = }
\end{aligned}
$$

kurtosis $:=\frac{\operatorname{MM}(4)}{\operatorname{MM}(2)^{2}}$
skewness $=-0.42$ there is a left and weak skewed
kurtosis $=1.884$ the shape of distribution is thin

