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GLOSSARY
Acceleration The acceleration of a moving body whose po-

sition at time t is u(t) is given by

d2u
dt2

Air resistance A body moving through air (or some other
medium) is slowed down by a resistive force (also
called a drag or damping force) that acts opposite to
the body’s velocity. See also “Viscous damping” and
“Newtonian damping.”

Amplitude The amplitude of a periodic oscillating function
u(t) is half the difference between its maximum and
minimum values.

Angular momentum The angular momentum vector of a
body rotating about an axis is its moment of inertia
about the axis times its angular velocity vector.

This is the analog in rotational mechanics of momen-
tum (mass times velocity) in linear mechanics.

Angular velocity An angular velocity vector, ω(t), is the
key to the relation between rotating body axes and a
fixed coordinate system of the observer. The compo-
nent ω j of the vector ω(t) along the jth body axis de-
scribes the spin rate of the body about that axis.

Autocatalator This is a chemical reaction of several steps,
at least one of which is autocatalytic.

Autocatalytic reaction In an autocatalytic reaction, a
chemical species stimulates more of its own produc-
tion than is destroyed in the process.

Autonomous ODE An autonomous ODE has no explicit
mention of the independent variable (usually t) in the
rate equations. For example, x′ = x2 is autonomous,
but x′ = x2 + t is not.

Balance law The balance law states that the net rate of
change of the amount of a substance in a compartment
equals the net rate of flow in minus the net rate of flow
out.

Beats When two sinusoids of nearly equal frequencies are
added the result appears to be a high frequency si-
nusoid modulated by a low frequency sinusoid called
a beat. A simple example is given by the function

(sin t)(sin 10t), where the first sine produces an “am-
plitude modulation” of the second.

Bessel functions of the 1st kindThe Bessel function of the
first kind of order zero,

J0(s) = 1 − 1
4

s2 + · · · + (−1)n s2n

n!222n
+ · · ·

is a solution of Bessel’s equation of order zero, and is
bounded and convergent for all s.

Bessel functions of the 2nd kindThe Bessel function of
the second kind of order zero, Y0(s), is another so-
lution of Bessel’s equation of order zero. It is much
more complicated than J0(s), and

Y0(s) → ∞ as s→ 0 +
See Chapter 11 for a complete formula for Y0(s) that
involves a logarithmic term, J0(s), and a complicated
(but convergent) infinite series.

Bessel’s equationBessel’s equation of order p ≥ 0 is

s2w′′(s) + sw′(s) + (s2 − p2)w = 0

where p is a nonnegative constant. Module 11 consid-
ers only p = 0. See Chapter 11 for p > 0.

Bessel’s equation, general solution ofBessel’s equation
of order zero is second order and linear. The general
solution is the set of all linear combinations of J0(s)
and Y0(s).

Bifurcation diagram A bifurcation diagram describes how
the behavior of a dynamical system changes as a pa-
rameter varies. It can appear in studies of iteration or
of differential equations.

In the case of a single real parameter, a bifurcation di-
agram plots a parameter versus something indicative
of the behavior, such as the variable being iterated (as
in Module 13, Nonlinear Behavior) or a single variable
marking location and stability of equilibrium points for
a differential equation.

In iteration of a function of a complex variable, two
dimensions are needed just to show the parameter, but
different colors can be used to show different behav-
iors (as in Module 13, Complex Dynamics).
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Cantor Set, Cantor Dust A Cantor set was first detailed
by Henry Smith in 1875, but was named in honor of
Georg Cantor, the founder of set theory, after he used
this bizarre construction in 1883. Now Cantor sets are
found in many guises in discrete dynamical systems.

A Cantor set is a totally disconnected set, in a finite
space, with uncountably many points. A typical con-
struction is to delete a band across the middle of a set,
then to delete the middle of both pieces that are left,
and then to repeat this process indefinitely.

Julia sets (see glossary) for parameter values outside
the Mandelbrot set (see glossary) are Cantor dusts,
constructed by a similar algorithm. See Companion
Book for References.

Carrying capacity The carrying capacity K of an environ-
ment is the maximum number of individuals that the
environment can support at steady state. If there are
fewer individuals than the carrying capacity in the en-
vironment, the population will grow; if there are more
individuals, the population will decline.

A widely used model for population dynamics involv-
ing a carrying capacity is the logisitc ODE

dN
dt

= rN(1 − N/K)

where r is the intrinsic growth rate constant.

Cascade A cascade is a compartment model where the
“flow” through the compartments is all one direction.

Center A center is an equilibrium point of an autonomous
planar linear system for which the eigenvalues are con-
jugate imaginaries ±iβ, β 
= 0. All nonconstant orbits
of an autonomous planar linear system with a center
are simple closed curves enclosing the equilibrium.

Centering an equilibrium If p∗ is an equilibrium point of
the system x′ = f (x) (so f (p∗) = 0), then the change
of coordinates x = y + p∗ moves p∗ to the origin in
the y-coordinate system.

Chain rule The chain rule for differentiating a function
L(θ(t), y(t)) with respect to t is

dL
dt

= ∂L
∂θ

dθ

dt
+ ∂L

∂y
dy
dt

= Lθθ
′ + Lyy′

= Lθ y+ Lyy′

Chaos Mathematical chaos is a technical term that describes
certain nonperiodic behavior of a discrete dynamical
system (Module 13) or solutions to a differential equa-
tion (Module 12). A system is said to be chaotic in a
region if all of the following are true.

• It exhibits sensitive dependence on initial condi-
tions.

• Periodic unstable orbits occur almost every-
where.

• Iterates of intervals get “mixed up.”

Chaotic behavior never repeats, revisits every neigh-
borhood infinitely often, but is not random. Each step
is completely determined by the previous step.

An equivalent list of requirements appears in Mod-
ule 12, Screen 1.4. Further discussion appears in
Chapter 13.

Characteristic equation The characteristic equation of a
square matrix A is det(λ I − A) = |λ I − A| = 0. For
a 2 × 2 matrix, this reduces to λ2 − tr Aλ + det A = 0
whose solutions, called eigenvalues of A are

λ = tr A±
√

tr2 A− 4 det A
2

Chemical law of mass actionThe rate of a reaction step is
proportional to the product of the concentrations of the
reactants.

Example: If one unit of species X produces one unit of
product Y in a reaction step, the rate of the step is kx,
where k is a positive constant. Thus, we have

x′ = −kx, y′ = kx

Example (Autocatalysis): If one unit of species X re-
acts with two units of Y and produces three units of Y
in an autocatalytic step, the reaction rate is

axyy= axy2

where a is a positive constant. Thus, we have

x′ = −axy2, y′ = 3axy22 − 2axy2 = axy2

because one unit of X is destroyed, while three units
of Y are created, and two are consumed.

Combustion model The changing concentration y(t) of a
reactant in a combustion process is modeled by the
IVP

y′ = y2(1 − y), y(0) = a, 0 ≤ t ≤ 2/a

where a is a small positive number that represents
a disturbance from the pre-ignition state y = 0.
R. E. O’Malley studied the problem in his book, Sin-
gular Perturbation Methods for Ordinary Differential
Equations, (1991: Springer).

Compartment model A compartment model is a set of
boxes (the compartments) and arrows that shows the
flow of a substance into and out of the different boxes.
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Component graphs A component graph of a solution of a
differential system is a graph of one of the dependent
variables as a function of t.

Example: For the ODE system

x′ = F(x, y)

y′ = G(x, y)

the component graphs are the plots of a solution x =
x(t) and y = y(t) in the respective tx- and ty-planes.

Concentration The concentration of a substance is the
amount of the substance dissolved per unit volume of
solution.

Connected setA connected set is a set with no islands. In
the early 1980’s Adrien Douady (Université Paris XI,
Orsay and Ecole Normale Supérieure) and John Hub-
bard (Cornell University) proved that the Mandelbrot
set (see Glossary) was connected. They did this by
showing that its exterior could be put in a one-to-one
correspondence with the exterior of a disk. They found
in the process that all the angles one might note while
walking around the boundary of the disk have spe-
cial analogs on the Mandelbrot set. Halfway around
the disk from the rightmost point corresponds to be-
ing at the tip of the Mandelbrot set, while one third or
two thirds the way around the disk corresponds to the
“neck” where the biggest ball attaches to the cardioid.

Conserved quantity A function E(q, y) is conserved along
a trajectory q = q(t), y = y(t), of a system q′ =
f (q, y), y′ = g(q, y), if dE(q(t), y(t))/dt= 0.

As time changes, the value of E stays constant on each
trajectory, although the value will vary from one trajec-
tory to another. The graph of each trajectory in the qy-
phase plane lies on one of the level sets E = constant.

This idea of a conserved quantity can be extended to
any autonomous system of ODEs. An autonomous
system is conservative if there is a function E that stays
constant along each trajectory, but is nonconstant on
every region (i.e., varies from trajectory to trajectory).

Cycle In a discrete dynamical system, including a Poincaré
section, a cycle is a sequence of iterates that repeats.
The number of iterates in a cycle is its period.

For an autonomous differential system, a cycle is a
nonconstant solution x(t) such that x(t + T) = x(t),
for all t, where T is a positive constant. The smallest
value of T for a cycle is its period.

For a cycle in a system of 2 ODEs, see Limit Cycle.

Damped pendulum A real pendulum of length L is af-
fected by friction or air resistance that is a function

of L, θ, and θ′, and acts opposite to the direction of
motion.

Throughout the Linear and Nonlinear Pendulums sub-
module of Module 10, we assume that, if there is any
damping, it is viscous (see Viscous damping); i.e., the
damping force is given by −bLθ′. The minus sign tells
us that damping acts opposite to the velocity.

Module 4 makes a more detailed study of the effects of
damping on a linear oscillator, as does Module 11 for
the spring in the Robot and Egg.

Damping Damping can arise from several sources, includ-
ing air resistance and friction. The most common
model of damping is viscous damping—the damping
force is assumed to be proportional to the velocity and
acts opposite to the direction of motion. See also New-
tonian damping.

Dense orbit An orbit x(t) of a system of ODEs x′ = f (t, x)

is dense in a region R of x-space if the orbit gets arbi-
trarily close to every point of R as time goes on.

That is, if x1 is any point in R , and ε is any positive
number, then, at some time t1, the distance between
x(t1) and x1 is less than ε.

Determinant The determinant of the 2 × 2 matrix

A =
[

a b
c d

]

is det A = ad− bc.

Deterministic A system of ODEs is said to be deterministic
if the state of the system at time t is uniquely deter-
mined by the state of the system at the initial time.

For example, the single first order ODE x′ = f (t, x) is
deterministic if f and ∂ f/∂x are continuous functions
of t and x, as for each set of initial data (t0, x0) there is
exactly one solution x(t).

Thus, if you were to choose the same initial data a sec-
ond time and watch the solution curve trace out in time
again, you would see exactly the same curve.

Dimensionless variablesSuppose that a variable x is
measured in units of kilograms and that x varies
from 10 to 500 kilograms. If we set y =
(x kilograms)/(100 kilograms), y is dimensionless,
and 0.1 ≤ y ≤ 5. The smaller range of values is useful
for computing. The fact that y has no units is useful
because it no longer matters if the units are kilograms,
grams, or some other units.

When variables are scaled to dimensionless quantities,
they are typically divided by a constant somewhere
around the middle of the expected range of values.
For example, by dividing a chemical concentration by
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a “typical” concentration, we obtain a dimensionless
concentration variable. Similarly, dimensionless time
is obtained by dividing ordinary time by a “standard”
time.

Direction field A direction field is a collection of line seg-
ments which shows the slope of the trajectories for an
autonomous ODE system

dx
dt

= F(x, y)

dy
dt

= G(x, y)

at a representative grid of points. An arrowhead on a
segment shows the direction of motion.

Disconnected Julia setA disconnected Julia set is actually
a Cantor dust. It is composed entirely of totally dis-
connected points, which means that it is almost never
possible to land on a point in the Julia set by clicking
on a pixel. You will probably find that every click you
can make starts an iteration that goes to infinity, only
because you cannot actually land on an exact enough
value to show a stable iteration.

Discrete dynamical systemA discrete dynamical system
takes the form un+1 = f (un), where the variable un

gives the state of the system at “time” n, and un+1 is
the state of the system at time n+ 1. See Module 13.

Eigenvalues The eigenvalues of a matrix A are the numbers
λ for which

Av = λv

for some nonzero vector v (the vector v is called an
eigenvector). The eigenvalues λ of a 2 × 2 matrix A
are the solutions to the characteristic equation of A:

λ2 − tr Aλ + det A = 0

λ = tr A±
√

(tr A)2 − 4 det A
2

where tr A is the trace of A, and det A is the determi-
nant of A. If a linear or linearized system of ODEs is
z′ = A(z− p∗), and if the real parts of the eigenvalues
of A are positive, then trajectories flow away from the
equilibrium point, p∗. If the real parts are negative,
then trajectories flow toward p∗.

Eigenvector An eigenvector of a matrix A is a nonzero vec-
tor, v, that satisfies Av = λv for some eigenvalue λ.
The ODE Architect Tool calculates eigenvalues and
eigenvectors of Jacobian matrices at any equilibrium
point of an autonomous system (linear or nonlinear).

Eigenvectors play a strong role in the local geometry
of phase portraits at an equilibrium point.

Energy In physics and engineering, energy is defined by

E = kinetic energy + potential energy

where kinetic energy is interpreted to be the energy of
motion, and the potential is the energy due to some
external force, such as gravity, or (in electricity) a bat-
tery, or a magnet. If energy is conserved, i.e., stays at
a constant level, then the system is said to be conser-
vative.

If we are dealing with the autonomous differential sys-
tem

x′ = y, y′ = −v(x) (5)

we can define an “energy function” by

E = 1
2

y2 + V(x)

where dV/dx = v(x). Note that E is constant
along each trajectory, because dE/dt = y dy/dt +
(dV/dx)(dx/dt) = y(−v(x)) + v(x)(y) = 0, where
the ODEs in system (5) have been used. The term
(1/2)y2 is the “kinetic energy”. V(x) is the “poten-
tial energy” in this context. See Chapter 10 for more
on these ideas.

Epidemic An epidemic occurs in an epidemilogical model
if the number of infectives, I (t), increases above its
initial value, I0. Thus, an epidemic occurs if I ′(0) > 0.

Equilibrium point An equilibrium point p∗ in phase (or
state) space of an autonomous ODE, is a point at which
all derivatives of the state variables are zero—a sta-
tionary point—a steady-state value of the state vari-
ables. For example, for the autonomous system,

x′ = F(x, y), y′ = G(x, y)

if F(x∗, y∗) = 0, G(x∗, y∗) = 0, then p∗ = (x∗, y∗) is
an equilibrium point, and x = x∗, y = y∗ (for all t) is
a constant solution.

For a discrete dynamical system, an equilibrium point
p∗ is one for which f (p∗) = p∗, so that p∗

n+1 = p∗
n, for

all n; p∗ is also called a fixed point of the system.

Estimated error For the solution u(t) of the IVP y′ =
f (t, y), y(t0) = y0, the local error at the nth step of
the Euler approximation is given by

en = Taylor series of u(t) − Euler approximation

= 1
2

h2u′′(tn) + h3u′′′(tn) + · · ·
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If the true solution, u(t), is not known, we can approx-
imate en for small h by

en ≈ Taylor approx. − Euler approx. = 1
2

h2u′′(tn)

Euler’s method Look at the IVP y′ = f (t, y), y(t0) = y0.
Euler’s method approximates the solution y(t) at dis-
crete t values. For step size h , put tn+1 = tn + h for
n = 0, 1, 2, . . . . Euler’s method approximates

y(t1), y(t2), . . .

by the values

y1, y2, . . .

where

yn+1 = yn + hf (tn, yn), for n = 0, 1, 2, . . .

Existence and uniquenessA basic uniqueness and exis-
tence theorem says that, for the IVP,

x′ = F(x, y, t), y′ = G(x, y, t),

x(t0) = x0, y(t0) = y0

a unique solution x(t), y(t) exists if F, G, ∂F/∂x,
∂F/∂y, ∂G/∂x, and ∂G/∂y are all continuous in some
region containing (x0, y0).

Fixed point A fixed point, p∗, of a discrete dynamical sys-
tem is a point for which xn+1 = f (xn) = xn. That is,
iteration of such a point simply gives the same point.

A fixed point can also be called an equilibrium or a
steady state. A fixed point may be a sink, a source, or a
saddle, depending on the character of the eigenvalues
of the associated linearization matrix of the iterating
function.

Forced damped pendulum A forced, viscously damped
pendulum has the modeling equation

mx′′ + bx′ + ksinx= F(t)

The beginning of Module 10 explains the terms and
parameters of this equation using θ instead of x. Mod-
ule 12 examines a case where chaos can result, with
b = 0.1, m = 1, k = 1, A = 1, and F(t) = cos t.
All three submodules of Module 12 are involved in ex-
plaining the behaviors, and the introduction to the Tan-
gled Basins submodule shows a movie of what hap-
pens when b is varied from 0 to 0.5.

Forced pendulum Some of the most complex and curious
behavior occurs when the pendulum is driven by an
external force. In Module 10, The Pendulum and its

Friends, you can experiment with three kinds of forces
in the Linear and Nonlinear Pendulums submodule,
and an internal pumping force in the Child on a Swing
submodule. But, for truly strange behavior, take a look
at Module 12, Chaos and Control.

Fractal dimension Benoit Mandelbrot in the early 1980’s
coined the word “fractal” to apply to objects with di-
mensions between integers. The boundary of the Man-
delbrot set (see glossary) is so complicated that its
dimension is surely greater than one (the dimension
of any “ordinary” curve). Just how much greater re-
mained an open question until 1992 when the Japanese
mathematician Mitsuhiro Shishikura proved it is actu-
ally dimension two!

Frequency The frequency of a function of period T is 1/T.
Another widely used term is “circular frequency”,
which is defined to be 2π/T. For example, the peri-
odic function sin(3t) has period T = 2π/3, frequency
3/(2π), and circular frequency 3.

General solution Consider the linear system x′ = Ax+ u
[where x has 2 components, A is a 2 × 2 matrix of
constants, and u is a constant vector or a function only
of t]. Let A have distinct eigenvalues λ1, λ2 with cor-
responding eigenvectors v1, v2. All solutions of the
system are given by the so-called general solution:

x(t) = C1eλ1tv1 + C2e
λ2 tv2 + x̃

where x̃ is any one particular solution of the system
and C1 and C2 are arbitrary constants.. If u is a con-
stant vector, then x̃ = p∗, the equilibrium of the sys-
tem. If x has more than two dimensions, terms of the
same form are added until all dimensions are covered.
Note that, if u = 0, p∗ = 0 is an equilibrium.

Geodesic Any smooth curve can be reparameterized to a
unit speed curve x(t), where |x′(t)| = 1. Unit-speed
curves x(t) on a surface are geodesics if the accelera-
tion vector x′′(t) is perpendicular to the surface at each
point x(t).

It can be shown that a geodesic is locally length-
minimizing, so, between any two points sufficiently
close, the geodesic curve is the shortest path.

GI tract The gastro-intestinal (GI) tract consists of the
stomach and the intestines.

Gravitational force The gravitational force is the force on
a body due to gravity. If the body is near the earth’s
surface, the force has magnitude mg, where m is the
body’s mass, and the force acts downward. The value
of acceleration due to gravity, g, is 32 ft/sec2 (English
units), 9.8 meters/sec2 (metric units).
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Great circle A great circle on a sphere is an example of
a geodesic. You can test this with a ball and string.
Hold one end of the string fixed on a ball. Choose an-
other point some distance away, and find the geodesic
or shortest path by pulling the string tight between the
two points. You will find that it always is along a circle
centered at the center of the ball, which is the defini-
tion of a great circle.

Hooke’s law Robert Hooke, an English physicist in the sev-
enteenth century, stated the law that a spring exerts a
force, on an attached mass, which is proportional to
the displacement of the mass from the equilibrium po-
sition and points back toward that position.

Initial condition An initial condition specifies the value of
a state variable at some particular time, usually at
t = 0.

Initial value problem An initial value problem (IVP) con-
sists of a differential equation or a system of ODEs
and an initial condition specifying the value of the state
variables at some particular time, usually at t = 0.

Integral surfaces The surface Sdefined by F(x, y, z) = C,
where C is a constant, is an integral surface of the au-
tonomous system

x′ = f (x, y, z), y′ = g(x, y, z), z′ = h(x, y, z)

if

d
dt

F(x, y, z) = ∂F
∂x

dx
dt

+ ∂F
∂y

dy
dt

+ ∂F
∂z

dz
dt

= ∂F
∂x

f + ∂F
∂y

g+ ∂F
∂z

h = 0

for all x, y, z. We get a family of integral surfaces by
varying the constant C. An orbit of the system that
touches an integral surface stays on it. The function F
is called an integral of the system.

For example, the family of spheres

F = x2 + y2 + z2 = constant

is a family of integral surfaces for the system

x′ = y, y′ = z− x, z′ = −y

because

2xx′ + 2yy′ + 2zz′ = 2xy+ 2y(z− x) + 2z(−y) = 0

Each orbit lies on a sphere, and each sphere is covered
with orbits.

Intermediate An intermediate is a chemical produced in the
course of a reaction which then disappears as the reac-
tion comes to an end.

Intrinsic growth rate At low population sizes, the net rate
of growth is essentially proportional to population size,
so that N′ = rN. The constant r is called the intrinsic
growth rate constant. It gives information about how
fast the population is changing before resources be-
come limited and reduce the growth rate.

Iteration Iteration generates a sequence of numbers by us-
ing a given number x0 and the rule xn+1 = f (xn) ,
where f (x) is a given function. Sometimes, xn is writ-
ten as x(n).

IVP See initial value problem.

Jacobian matrix The system x′ = F(x, y), y′ = G(x, y),
has the Jacobian matrix

J =
[

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]

The eigenvalues and eigenvectors of this matrix at an
equilibrium point p∗ help determine the local geome-
try of the phase portrait.

Jacobian matrices J can be defined for autonomous
systems of ODEs with any number of state variables.

The ODE Architect Tool will find eigenvalues and
eigenvectors of J at any equilibrium point.

Julia Set In complex dynamics, a Julia set for a given func-
tion f (z) separates those points that iterate to infinity
from those that do not. See the third submodule of
Module 13 Dynamical Systems.

Julia sets were discovered about 1910 by two French
mathematicians, Pierre Fatou and Gaston Julia. But,
without computer graphics, they were unable to see
the details of ragged structure that today display Can-
tor sets, self-similarity and fractal properties.

Kinetic energy of rotation The kinetic energy of rotation
of a gyrating body is

E = 1
2
( I1ω

2
1 + I2ω

2
2 + I3ω

2
3)

where I j and ω j are, respectively, the moment of iner-
tia and the angular velocity about the body axis, j, for
j = 1, 2, 3.

Lift The lift force on a body moving through air is a force
that acts in a direction orthogonal to the motion. Its
magnitude may be modeled by a term which is pro-
portional to the speed or to the square of the speed.
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Limit cycle A cycle is a closed curve orbit of the system

x′ = F(x, y)

y′ = G(x, y)

A cycle is the orbit of a periodic solution.
An attracting limit cycle is a cycle that attracts all
nearby orbits as time increases, and a repelling limit
cycle if it repels all nearby orbits as time increases.

Linearization For a nonlinear ODE, a linearization (or lin-
ear approximation) can be made about an equilibrium,
p∗ = (x∗, y∗), as follows:
For x′ = F(x, y), y′ = G(x, y), the linearized system
is z′ = J(z− p∗), where J is the Jacobian matrix eval-
uated at p∗, i.e.,

[
x
y

]′
=

[
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]
p∗

[
x− x∗

y− y∗

]

The eigenvalues and eigenvectors of the Jacobian ma-
trix, J, at an equilibrium point, p∗, determine the ge-
ometry of the phase portrait close to the equilibrium
point p∗. These ideas can be extended to any au-
tonomous system of ODEs. A parallel definition ap-
plies to a discrete dynamical system.

Linear pendulum Pendulum motion can be modeled by
a nonlinear ODE, but there is an approximating lin-
ear ODE that works well for small angles θ, where
sinθ ≈ θ. In that case, the mathematics is the same
as that discussed for the mass on a spring in Module 4.

Linear system A linear system of first-order ODEs has
only terms that are linear in the state variables. The
coefficients can be constants or functions (even non-
linear) of t.
Example: Here is a linear system with state variables
x and y, and constant coefficients a, b, . . . , h:

x′ = ax+ by+ c

y′ = f x+ gy+ h

This can be written in matrix/vector form as:

z′ = Az+ k

z =
[

x
y

]
, A =

[
a b
f g

]
, k = [

c h
]

The example can be extended to n state variables and
an n × n matrix A. If z = p∗ is an equilibrium point
of a linear system, then k = −Ap∗ and the system may
be written as

z′ = A(z− p∗)

What is special about a constant coefficient linear sys-
tem is that linear algebra can be applied to find the gen-
eral solution. See General solution (for linear ODEs).

Lissajous figures Jules Antoine Lissajous was a 19th-
century French physicist who devised ingenious ways
to visualize wave motion that involves more than one
frequency. For example, try plotting the parametric
curve x1 = sin 2t, x2 = sin 3t in the x1x2-plane with
0 ≤ t ≤ 320.

The graph of a solution x1 = x1(t), x2 = x2(t) of
[

x1

x2

]′′
= B

[
x1

x2

]
, for B a 2 × 2 constant matrix

in the x1x2-plane is a Lissajous figure if the vector
(x1(0), x2(0)) is not an eigenvector of B.

See also “Normal modes and frequencies.”

Local IVP One-step methods for approximating solutions
to the IVP

y′ = f (t, y), y(t0) = y0

generate the (n + 1)st approximation, yn+1, from the
nth, yn, by solving the local IVP

u′ = f (t, u), u(tn) = yn

This is exactly the same ODE, but the initial condition
is different at each step.

Logistic model The logistic equation is the fundamental
model for population growth in an environment with
limited resources. Many advanced models in ecology
are based on the logistic equation.

For continuous models, the logistic ODE is

d P
dt

= r P

(
1 − P

k

)

where r is the intrinsic growth rate constant, and K is
the carrying capacity.

For discrete models, the logistic map is

fλ(x) = λx
(

1 − x
K

)

where λ is the intrinsic growth rate constant, and K is
again the carrying capacity.

Mandelbrot Set In complex dynamics, for fc(z) = z2 + c,
the Mandelbrot set is a bifurcation diagram in the com-
plex c-plane, computed by coloring all c-values for
which z does not iterate to infinity. It acts as a cata-
log of all the Julia sets for individual values of c.
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The boundary of the Mandelbrot set is even more com-
plicated than the boundary of a given Julia set. More
detail appears at every level of zoom, but no two re-
gions are exactly self-similar.

Two mathematicians at UCLA, R. Brooks and
J. P. Matelsky, published the first picture in 1978. It
is now called the Mandelbrot set, because Benoit Man-
delbrot of the Thomas J. Watson IBM Research Center
made it famous in the early 80s.

You can experiment with the Mandelbrot set in Mod-
ule 13, on screens 3.1 and 3.4.

Matrix An n × n square matrix A of constants, where n is
a positive integer, is an array of numbers arranged into
n rows and n columns. The entry where the ith row
meets the jth column is denoted by aij .

In ODEs we most often see matrices A as the array of
coefficients of a linear system. For example, here is a
planar linear system with a 2 × 2 coefficient matrix A:

x′ = 2x − 3y

y′ = 7x + 4y
A =

[
2 −3
7 4

]

Mixing A function f : R→ R is “mixing” if given any two
intervals I and J there exists an n > 0 such that the nth
iterate of I intersects J.

Modeling A mathematical model is a collection of variables
and equations representing some aspect of a physi-
cal system. In our case, the equations are differential
equations. Steps involved in the modeling process are:

1. State the problem.

2. Identify the quantities to which variables are to
be assigned; choose units.

3. State laws which govern the relationships and be-
haviors of the variables.

4. Translate the laws and other data into mathemat-
ical notation.

5. Solve the resulting equations.

6. Apply the mathematical solution to the physical
system.

7. Test to see whether the solution is reasonable.

8. Revise the model and/or restate the problem, if
necessary.

Moment of inertia The moment of inertia, I , of a body B
about an axis is given by

I =
∫ ∫ ∫

B
r2ρ(x, y, z)dV(x, y, z)

where r is the distance from a general point in the body
to the axis and ρ is the density function for B. Each

moment of inertia plays the same role as mass does in
nonrotational motion, but, now, the shape of the body
and the position of the axis play a role.

Newtonian damping A body moving through air (or some
other medium) is slowed down by a resistive force that
acts opposite to the body’s velocity, v. In Newtonian
damping (or Newtonian drag), the magnitude of the
force is proportional to the square of the magnitude of
the velocity, i.e., to the square of the speed:

force = −k|v|v for some positive constant k

Newton’s law of cooling The temperature, T , of a warm
body immersed in a cooler outside medium of temper-
ature Tout changes at a rate proportional to the temper-
ature dfference,

dT
dt

= k(Tout − T)

where Tout is assumed to be unaffected by T (unless
stated otherwise). The same ODE works if Tout is
larger than T (Newton’s law of warming).

Newton’s second lawNewton’s second law states that, for
a body of constant mass,

mass · acceleration = sum of forces acting on body

This is a differential equation, because acceleration is
the rate of change of velocity, and velocity is the rate
of change of position.

Nodal equilibrium The behavior of the trajectories of an
autonomous system of ODEs is nodal at an equilib-
rium point if all nearby trajectories approach the equi-
librium point with definite tangents as t → +∞ (nodal
sink), or as t → −∞ (nodal source).

If the system is linear with the matrix of coefficients
A, then the equilibrium is a nodal sink if all eigenval-
ues of A are negative, a nodal source if all eigenvalues
are positive. This also holds at an equilibrium point
of any nonlinear autonomous system, where A is the
Jacobian matrix at the equilibrium point.

Nonautonomous ODE A system of ODEs with t occurring
explicitly in the expressions for the rates is nonau-
tonomous.

Nonlinear center point An equilibrium point of a nonlin-
ear system, x′ = F(x, y), y′ = G(x, y), is a center if
all nearby orbits are simple closed curves enclosing the
equilibrium point.
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Nonlinear ODE A nonlinear ODE or system has at least
some dependent variables appearing in nonlinear terms
(e.g., xy, sin x,

√
x). Thus, linear algebra cannot be

applied to the system overall. But, near an equilibrium
(of which there are usually more than one for a non-
linear system of ODEs), a linearization is (usually) a
good approximation, and allows analysis with the im-
portant roles of the eigenvalues and eigenvectors.

Nonlinear pendulum Newton’s laws of motion give us

force = mass × acceleration

In the circular motion of a pendulum of fixed length,
L, at angle θ, acceleration is given by Lθ′′. The only
forces acting on the undamped pendulum are those due
tension in the rod and gravity. The component of force
in the direction in which the pendulum bob is moving:

F = mLθ′′ = −mgsinθ

where m is the mass of the pendulum bob, and g is
the acceleration due to gravity. The mass of the rigid
support rod is assumed to be negligible.

Normal modes and frequenciesThe normal modes of a
second order system z′′ = Bz(where B is a 2 × 2 ma-
trix with negative eigenvalues µ1, µ2) are eigenvectors
v1, v2 of B. The general solution is all linear combina-
tions of the periodic oscillations z1, z2, z3, z4 along the
normal modes.

z1 = v1 cos ω1t, z2 = v1 sin ω1t,

z3 =v2 cos ω2t, z4 = v2 sin ω2t

where ω1 = √−µ1, ω2 = √−µ2, are the normal fre-
quencies.

See also “Second order systems.”

Normalized ODE In a normalized differential equation, the
the highest order derivative appears alone in a separate
term and has a coefficient equal to one.

ODE See ordinary differential equation.

On-off function See square wave.

Orbit See trajectory.

Order of the method A method of numerical approxima-
tion to a solution of an IVP is order p, if there exists a
constant C such that

max(|global error|) < Chp

as h → 0.

Ordinary differential equation An ordinary differential
equation (ODE) is an equation involving an unknown
function and one or more of its derivatives. The order

of the ODE is the order of the highest derivative in the
ODE. Examples:

dy
dt

= 2t, (first order, unknown y(t))

dy
dt

= 2y+ t, (first order, unknown y(t))

x′′ − 4x′ + 7x = 4 sin 2t, (second order, unknown x(t))

Oscillation times Oscillation times of a solution curve x(t)
of an ODE that oscillates around x = 0 are the times
between successive crossings of x = 0 in the same di-
rection. If the solution is periodic, the oscillation times
all equal the period.

Oscillations A scalar function x(t) oscillates if x(t) alter-
nately increases and decreases as time increases. The
oscillation is periodic of period T if x(t + T) = x(t)
for all t and if T is the smallest positive number for
which this is true.

Parametrization Each coordinate of a point in space may
sometime be given in terms of other variable(s) or pa-
rameter(s). A single parameter suffices to describe a
curve in space. Two parameters are required to de-
scribe a two-dimensional surface.

Period The period of a periodic function u(t) is the small-
est time interval after which the graph of u versus t
repeats itself. It can be found by estimating the time
interval between any two corresponding points, e.g.,
successive absolute maxima.

The period of a cycle in a discrete dynamical system is
the minimal number of iterations after which the entire
cycle repeats.

Periodic phase planeThe periodic xx′-phase plane for the
pendulum ODE x′′ = 0.1x′ + sin x = cos t is plotted
periodically in x. An orbit leaving the screen on the
right comes back on the left. In other words, the hor-
izontal axis represents x mod 2π. This view ignores
how many times the pendulum bob has gone over the
top. See Module 12, screen 1.4.

Phase angleThe phase angle, δ, of the oscillatory function
u(t) = Acos(ω0t + δ) shifts the the graph of u(t) from
the position of a standard cosine graph u = cos ω0t by
the amount δ/ω0 . The phase angle may have either
sign and must lie in the interval −π/ω0 < δ < π/ω0.

Phase planeThe phase plane, or state plane, is the xyplane
for the dependent variables x and y of the system

x′ = F(x, y)

y′ = G(x, y)
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The trajectory, or orbit, of a solution

x = x(t), y = y(t)

of the system is drawn in this plane with t as a param-
eter. A graph of trajectories is called a phase portrait
for the system.

The higher dimensional analog is called phase space,
or state space.

Pitch The pitch (frequency) of an oscillating function u(t)
is the number of oscillations per unit of time t.

Poincaré Henri Poincaré (1854–1912) was one of the
last mathematicians to have a universal grasp of all
branches of the subject. He was also a great popular
writer on mathematics. Poincaré’s books sold over a
million copies.

Poincaré section A Poincaré section of a second order ODE
x′′ = f (x, x′, t), where f has period T in t, is a strobe
picture of the xx′-phase plane that plots only the points
of an orbit that occur at intervals separated by a period
of T time units, i.e., the sequence of points

P0 = (x(0), x′(0))

P1 = (x(T), x′(T))

...

Pn = (x(nT), x′(nT))

...

This view of phase space was developed by Henri
Poincaré in the early twentieth century, because it is
especially useful for analyzing nonautonomous differ-
ential equations. For further detail, see the entire sec-
ond submodule of Module 12, Chaos and Control.

A Poincaré section is a two-dimensional discrete dy-
namical system. Another example of such a system is
discussed in some detail in the second submodule of
Module 13.

Population quadrant In a two-species population model,
the population quadrant of the phase plane is the one
where both dependent variables are non-negative.

Post-image In a discrete dynamical system, a post-image of
a set S0 is another set of points, S1 , where the iterates
of S0 land in one step.

For a Poincaré section of an ODE, S1 would be the set
of points arriving at S1 when the ODE is solved from
S0 over one time period of the Poincaré section. See
submodule 3 of Module 12.

Pre-image In a discrete dynamical system, a pre-image of a
set S0 is another set of points, S−1, that iterate to S0 in
one step.

For a Poincaré section of an ODE, S−1 would be the
set of points arriving at S0 when the ODE is solved
from S−1 over one time period of the Poincaré section.
See submodule 3 of Module 12.

Products The products of a chemical reaction are the
species produced by a reaction step. The end prod-
ucts are the species that remain after all of the reaction
steps have ended.

Proportional Two variables are proportional if their ratio
is constant. Thus, the circumference, c, of a circle is
proportional to the diameter, because c/d = 1.

The basic linear differential equation

dy
dt

= ky

represents a quantity y whose derivative is propor-
tional to its value.

Random Random motion is the opposite of deterministic
motion. In random motion, there is no way to predict
the future state of a system from knowledge of the ini-
tial state. For example, if you get heads on the first toss
of a coin, you cannot predict the outcome of the fifth
toss.

Rate constant Example: The constant coefficients a, b, and
c in the rate equation

x′(t) = ax(t) − by(t)− cx2(t)

are often called rate constants.

Rates of chemical reactionsThe rate of a reaction step is
the speed at which a product species is created or
(equivalently) at which a reactant species is destroyed
in the step.

Reactant A chemical reactant produces other chemicals in
a reaction.

ResonanceThis phenomenon occurs when the amplitude of
a solution of a forced second order ODE becomes ei-
ther unbounded (in an undamped ODE) or relatively
large (in a damped ODE) after long enough times.

Rotation system As Lagrange discovered in the 18th cen-
tury, the equations of motion governing a gyrating
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body are

ω′
1 = ( I2 − I3)ω2ω3

I1

ω′
2 = ( I3 − I1)ω1ω3

I2

ω′
3 = ( I1 − I2)ω1ω2

I3

where I j is the principal moment of inertia, and ωj is
the component of angular velocity about the jth body
axis.

Saddle An equilibrium point of a planar autonomous ODE,
or a fixed point of a discrete two-dimensional dynami-
cal system, with the property that, in one direction (the
unstable one), trajectories move away from it, while,
in another direction (the stable one), trajectories move
toward it.

At a saddle of an ODE, one eigenvalue of the associ-
ated linearization matrix must be real and positive, and
at least one eigenvalue must be real and negative.

Scaling Before computing or plotting, variables are often
scaled for convenience.

See also “Dimensionless variables.”

Second order systemsSecond order systems of the form
z′′ = Bzoften arise in modeling mechanical structures
with no damping, (and hence, no loss of energy). Here,
z is an n-vector state variable, z′′ denotes d2z/dt2, and
B is an n × n matrix of real constants.

Although numerical solvers usually require that we in-
troduce v = z′ and enter the system of 2n first order
ODEs, z′ = v, v′ = Bz, we can learn a lot about solu-
tions directly from the eigenvalues and eigenvectors of
the matrix B.

See also “Normal modes and frequencies” and
Screen 3.4 in Module ].

Sensitivity An ODE model contains elements, such as ini-
tial data, environmental parameters, and functions,
whose exact values are experimentally determined.
The effect on the solution of the model ODEs when
these factors are changed is called sensitivity.

Sensitivity to initial conditions A dynamical system has
sensitive dependence on initial conditions if every pair
of nearby points eventually gets mapped to points far
apart.

Separatrix Separatrices are trajectories of a planar au-
tonomous system that enter or leave an equilibrium
point p with definite tangents as t → ±∞, and divide

a neighborhood of p into distinct regions of quite dif-
ferent long-term trajectory behavior as t increases or
decreases.

For more on separatrices see “Separatrices and Saddle
Points” in Chapter 7.

Sink A sink is an equilibrium point of a system of ODEs, or
a fixed point of a discrete dynamical system, with the
property that all trajectories move toward the equilib-
rium.

If all eigenvalues of the associated linearization matrix
at an equilibrium of a system of ODEs have negative
real part, then the equilibrium is a sink.

Slope The slope of a line segment in the xy-plane is given
by the formula

m = change in y
change in x

The slope of a function y = f (x) at a point is the value
of the derivative of the function at that point.

Slope field See direction field.

Solution A solution to a differential equation is any func-
tion which gives a true statement when plugged into
the equation. Such a function is called a particular so-
lution. Thus,

y = t2 − 2

is a particular solution to the equation

dy
dt

= 2t

The set of all possible solutions to a differential equa-
tion is called the general solution. Thus,

y = t2 + C

is the general solution to the equation

dy
dt

= 2t

Source A source is an equilibrium of a system of ODEs,
or a fixed point of a discrete dynamical system, with
the property that all trajectories move away from the
equilibrium.

If all eigenvalues of the associated linearization matrix
at an equilibrium of a system of ODEs have positive
real part, then the equilibrium is a source.

Spiral equilibrium An equilibrium point of a planar au-
tonomous system of ODEs is a spiral point if all nearby
orbits spiral toward it (or away from it) as time in-
creases.
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If the system is linear with the matrix of coefficients A,
then the equilibrium is a spiral sink if the eigenvalues
of A are complex conjugates with negative real part,
a spiral source if the real part is positive. This also
holds at an equilibrium point of any nonlinear planar
autonomous system, where A is the Jacobian matrix at
the equilibrium.

Spring A Hooke’s law restoring force (proportional to dis-
placement, x, from equilibrium) and a viscous damp-
ing force (proportional to velocity, but oppositely di-
rected) act on a body of mass m at the end of spring.
By Newton’s Second Law,

mx′′ = −kx− bx′

where k and b are the constants of proportionality.

Spring force The spring force is often assumed to obey
Hooke’s law—the magnitude of the force in the spring
is proportional to the magnitude of its displacement
from equilibrium, and the force acts in the direction
opposite to the displacement.

The proportionality constant, k, is called the spring
constant. A large value of k corresponds to a stiff
spring.

Square wave An on-off function (also called a square
wave) is a periodic function which has a constant
nonzero value for a fraction of each period; otherwise,
it has a value of 0. For example, y = ASqWave(t, 6, 2)

is a square wave of amplitude A and period 6, which
is “on” for the first 2 units of its period of 6 units, then
is off the next 4 time units.

Stable An equilibrium point p∗ of an autonomous system
of ODEs is stable if trajectories that start near p∗ stay
near p∗, as time advances. The equilibrium point
p∗ = 0 of the linear system z′ = Az, where A is a ma-
trix of real constants, is stable if all eigenvalues of A
are negative or have negative real parts.

State spaceThe phase plane, or state plane, is the xy-plane
for the dependent variables x and y of the system

x′ = F(x, y)

y′ = G(x, y)

The trajectory, or orbit, of a solution

x = x(t), y = y(t)

of the system is drawn in this plane with t as a param-
eter. A graph of trajectories is called a phase portrait
for the system.

The higher dimensional analog is called phase space,
or state space.

State variables These are dependent variables whose val-
ues at a given time can be used with the modeling
ODEs to determine the state of the system at any other
time.

Steady state A steady state of a system of ODEs is an equi-
librium position where no state variable changes with
time.

Surface A surface of a three-dimensional object is just its
two- dimensional “skin,” and does not include the
space or volume enclosed by the surface.

Taylor remainder For an n + 1 times differentiable func-
tion u(t), the difference (or Taylor remainder)

u(t) − [u(t0) + hu′(t0) + · · · + 1
n!

hnu(n) (t0) + · · · ]

can be written as

1
(n+ 1)!

hnu(n+1)(c)

for some c in the interval [t0, t0 + h], a fact which gives
useful estimates.

Taylor series expansionFor an infinitely differentiable
function u(t), the Taylor series expansion at t0 for
u(t0 + h) is

u(t0) + hu′(t0) + 1
2

h2u′′(t0) + · · · + 1
n!

hnu(n) (t0) + · · ·

Taylor series method Look at the IVP y′ = f (t, y),
y(t0) = y0. For a step size h, the three-term Tay-
lor series method approximates the solution y(t) at
tn+1 = tn + h, for n = 0, 1, 2, . . . , using the algorithm

yn+1 = yn + hf (tn, yn) + 1
2

h2 ft(tn, yn)

Trace The trace of a square matrix is the sum of its diagonal
entries. So

tr

[
a b
c d

]
= a + d

Trace-determinant parabola The eigenvalues λ1, λ2 of a
2 × 2 matrix A are given by

λ1, λ2 = tr A±
√

tr2 A− 4 det A
2

The trace-determinant parabola, 4 det A = tr2 A, di-
vides the tr A − det A plane into the upper region
where A’s eigenvalues are complex conjugates and the
lower region where they are real. The two eigenvalues
are real and equal on the parabola.
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Trajectory A trajectory (or orbit, or path) is the paramet-
ric curve drawn in the xy-plane, called the phase plane
or state plane, by x = x(t) and y = y(t) as t changes,
where x(t), y(t) is a solution of

x′ = F(x, y, t)

y′ = G(x, y, t)

The trajectory shows how x(t) and y(t) play off
against each other as time changes.
For a higher dimensional system, the definition ex-
tends to parametric curves in higher dimensional phase
space or state space.

Unstable An equilibrium point p∗ of an autonomous system
of ODEs is unstable if it is not stable. That means there
is a neighborhood N of p∗ with the property that, start-
ing inside each neighborhood M of p∗, there is at least
one trajectory that goes outside N as time advances.

Vector A vector is a directed quantity with length. In two
dimensions, a vector can be written in terms of unit
vectors î and ĵ , directed along the positive x and y axes.

Viscous damping A body moving through air (or some
other medium) is slowed down by a resistive force

that acts opposite to the body’s velocity, v. In viscous
damping (or viscous drag), the force is proportional to
the velocity:

force = −kv

for some positive constant k.

Wada property The Wada property, as described and illus-
trated on Screen 3.2 of Module 12 is the fact that:

Any point on the boundary of any one of the
areas describe on Screen 3.2 is also on the
boundary of all the others.

The geometry/topology example constructed by Wada
was the first to have this property; we can now show
that the basins of attraction for our forced, damped
pendulum ODE have the same property. See Mod-
ule 12 and Chapter 12.

All we know about Wada is that a Japanese manuscript
asserts that someone by that name is responsible for
constructing this example, showing that for three ar-
eas in a plane, they can become so utterly tangled that
every boundary point touches all three areas!


