

Exam One

Dr.Hamed Al-Sulami

أنقر على Start لبداء الاختبار.

يحتوي هذا الأختبار على خمسة وأربعين سؤالاً.

عند الانتهاء من الاختبار أنقر على End للحصول على النتيجة.

بالتوفيق إن شاء الله.

hhaalsalmi@kau.edu.sa Version 1.0

© 2011 March 20, 2011 Enter Name:

I.D. Number:

Answer each of the following.

1. Solve the inequality 2x - 3 < -7

$$(-\infty, -2)$$

$$(-\infty, -2]$$

$$(-2,\infty)$$

$$[-2,\infty)$$

2. Solve the inequality -2 < 2 - 2x < 3

$$[-2, 1/2]$$

$$[-1/2, 2]$$

$$(-2,1/2)$$

$$(-1/2,2)$$

3. Solve the inequality $x^2 + 4x + 3 < 0$

$$(-\infty, -3) \cup (-1, \infty)$$

$$(-\infty, -3] \cup [-1, \infty)$$

$$(-3, -1)$$

$$[-3, -1]$$

4. Solve |2x+1| < 1

$$[-1, 0]$$

$$(-1,0)$$

$$(-\infty, -1) \cup (0, \infty)$$

$$(-\infty,-1]\cup[0,\infty)$$

5. Solve |2x+1| > 2

$$(-\infty, -3/2) \cup (1/2, \infty)$$

$$(-\infty, -3/2] \cup [1/2, \infty)$$

$$(-3/2,1/2)$$

$$[-3/2, 1/2]$$

6. Solve $\frac{x+2}{x-2} \ge 0$.

$$(-\infty, -2) \cup (2, \infty)$$

$$(-\infty, -2] \cup (2, \infty)$$

$$(-2, 2)$$

$$(-\infty, -2] \cup [2, \infty)$$

7. The distance between the points (5,2),(1,-1) is

5

$$-5$$

$$\sqrt{5}$$

$$-\sqrt{5}$$

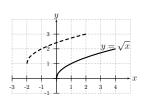
8. The accompanying figure shows the graph of $y = \sqrt{x}$

$$y = \sqrt{x+2} - 1$$

$$y = \sqrt{x - 2} + 1$$

$$y = \sqrt{x - 2} - 1$$

$$y = \sqrt{x+2} + 1$$



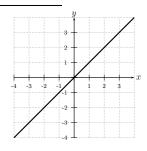
9. The accompanying figure shows the graph of

$$f(x) = x$$

$$f(x) = |x|$$

$$f(x) = x^3$$

$$f(x) = x^2$$



10. Find the slope m of the line through the points (3,-6) and (1,-1).

$$m = \frac{5}{2}$$

$$m = \frac{-2}{5}$$

$$m = \frac{-5}{2}$$

$$m = \frac{2}{5}$$

- 11. Find a second point on the line with slope $\frac{-1}{2}$ and passes through (1,2).
 - (3, 1)
 - (0, 4)
 - (3, 3)
 - (4,0)
- **12.** Determine if the two lines are parallel, perpendicular, or neither. y-3x-1=0 and 9y+3x=-6.

perpendicular

parallel

neither

13. Find an equation of the line through the point (3, 1) and perpendicular to the line y - 2x = 1.

$$y = -2x + 7$$

$$y = 2x - 5$$

$$y = \frac{1}{2}x - \frac{1}{2}$$

$$y = \frac{-1}{2}x + \frac{5}{2}$$

14. Find the domain of the function f(x) = x - 1.

 \mathbb{R}

$$(-\infty,1)\cup(1,\infty)$$

$$\mathbb{R} \setminus \{-1\}$$

$$(-\infty,1]$$

15. Find the domain of the function $f(x) = \sqrt{2x-3}$.

$$(3/2,\infty)$$

$$\mathbb{R}\setminus\{3/2\}$$

$$(-\infty,3/2)\cup(3/2,\infty)$$

$$[3/2,\infty)$$

16. Find the domain of the function

$$f(x) = \frac{5x+1}{x^2+4}.$$

$$(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$$

 \mathbb{R}

$$(-\infty,2)\cup(2,\infty)$$

$$(-\infty,2)\cup(2,\infty)$$

17. Find the domain of the function $f(x) = \sqrt[3]{x^2 - 1}$.

$$(-\infty, -1) \cup (1, \infty)$$

$$\mathbb{R} \setminus \{-1, 1\}$$

$$[-1, 1]$$

 \mathbb{R}

18. Find the domain of the function $f(x) = \frac{5x+1}{x^2-x-6}$.

$$(-\infty, -3) \cup (-3, 2) \cup (2, \infty)$$

$$(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$$

$$(-\infty, -2) \cup (3, \infty)$$

$$(-\infty, -3] \cup [2, \infty)$$

19. The function $f(x) = 4x^3 - 5x^5$, is

Even

Even and odd

Odd

Neither even nor odd

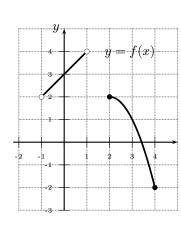
20. The accompanying figure shows the graph of y = f(x). Then the domain of f is

$$[-1,1) \cup [2,4]$$

$$[-1,1] \cup [2,4]$$

$$(-1,1] \cup [2,4]$$

$$(-1,1) \cup [2,4]$$



- **21.** Find the points of intersection of $y = x^2 2x + 4$ and y = 3x 2.
 - (-2, -8), (-3, -11)
 - (-3, -11)
 - (-2, -8)
 - (2,4),(3,7)
- 22. Covert the 120° to radian
 - $2\pi/3$
 - $\pi/3$
 - $4\pi/3$
 - $\pi/6$

- **23.** Covert the $\frac{4\pi}{3}$ to degree
 - 140°
 - 160°
 - 240°
 - 210°
- **24.** $\cos\left(\frac{\pi}{4}\right) =$

 - $-\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$

25.
$$\sin\left(\frac{5\pi}{3}\right) =$$

 $\frac{1}{2}$

 $\frac{\sqrt{3}}{2}$

 $-\frac{\sqrt{2}}{2}$

 $-\frac{1}{2}$

26.
$$\cos(-x) =$$

 $-\cos x$

 $\cos x$

 $\sin x$

 $-\sin x$

27. If
$$\tan x = \frac{5}{12}$$
, $0 < x < \frac{\pi}{2}$ then $\cos x = \frac{\pi}{2}$

- $\frac{13}{12}$
- $\frac{12}{13}$
- $\frac{5}{13}$
- $\frac{13}{5}$

28. If
$$f(x) = x^2 + 1$$
 and $g(x) = \sqrt{x-1}$, then $(g-f)(x) = .$

$$\sqrt{x-1} - x^2 - 1$$

$$x^2 + 1 - \sqrt{x-1}$$

$$\sqrt{x-1} - x^2 + 11$$

$$\sqrt{x-1} + x^2 + 1$$

29. If
$$f(x) = \sqrt{x-3}$$
 and $g(x) = x-5$, then domain $\left(\frac{f}{g}\right)$ is

 \mathbb{R}

$$(-\infty,3)$$

$$[3,5)\cup(5,\infty)$$

 $[3,\infty)$

30. Find the domain of the function

$$f(x) = \sqrt{25 - x^2} - \sqrt{x^2 - 4}.$$

 \mathbb{R}

$$[-5, -2] \cup [2, 5]$$

$$\mathbb{R}\setminus\{\pm2,\pm5\}$$

$$(-\infty, -5] \cup [5, \infty)$$

31. Let
$$f(x) = x^2 - 1$$
 and $g(x) = \sqrt{x+3}$, then $(f \circ g)(x) = 1$

$$x+2$$

$$\sqrt{x^2+2}$$

$$\sqrt{x+3}-1$$

$$\sqrt{x^2-1}+2$$

32. Let
$$f(x) = x^2 - 1$$
 and $g(x) = \sqrt{x+3}$, then $D(f \circ g) = (-\infty, -3) \cup (-3, \infty)$

 \mathbb{R}

$$(-3,\infty)$$

$$[-3,\infty)$$

33. Let
$$f(x) = \sqrt{x}$$
 and $g(x) = \sqrt{x-1}$, then $(g \circ f)(x) =$

1

$$x-1$$

$$\sqrt{\sqrt{x}}$$

$$\sqrt{\sqrt{x}-1}$$

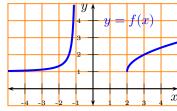
34. Use the graph of y = f(x) to evaluate f(3)

1

2

-1

0



35. Let
$$f(x) = x^2 - 1$$
 and $g(x) = \sqrt{x+3}$, then $(g \circ f) =$

1

$$x+2$$

$$\sqrt{x+2}$$

$$\sqrt{x^2+2}$$

$$x^2 + 2$$

36. Let
$$f(x) = x^2 - 1$$
 and $g(x) = \sqrt{x+3}$, then $D(g \circ f)(x) = (-\infty, -3) \cup (-3, \infty)$

$$\mathbb{R}$$

$$(-3,\infty)$$

$$[-3,\infty)$$

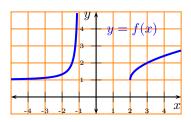
37. Using the graph to find the domain of f.

$$[1,\infty)$$

$$(-\infty, -1] \cup [2, \infty)$$

$$(-\infty, -1) \cup [2, \infty)$$

 $(1,\infty)$



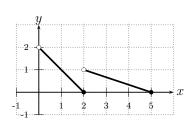
38. A formula for the function graphed to the right is

$$f(x) = \begin{cases} -x + 2, & \text{if } 0 \le x \le 2; \\ \frac{-1}{3}x + \frac{5}{3}, & \text{if } 2 \le x \le 5. \end{cases}$$

$$f(x) = \begin{cases} x - 2, & \text{if } 0 \le x \le 2; \\ \frac{-1}{3}x - \frac{5}{3}, & \text{if } 2 \le x \le 5. \end{cases}$$

$$f(x) = \begin{cases} -x + 2, & \text{if } 0 < x \le 2; \\ \frac{-1}{3}x + \frac{5}{3}, & \text{if } 2 < x \le 5. \end{cases}$$

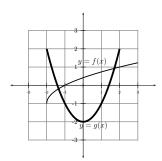
$$f(x) = \begin{cases} x - 2, & \text{if } 0 < x \le 2; \\ \frac{-1}{3}x - \frac{5}{3}, & \text{if } 2 < x \le 5. \end{cases}$$



39. Use the graph to find $(f \circ g)(0)$.

$$-2$$

0



40. The domain of the function $f(x) = \frac{x^2 - 1}{\sqrt{4 - x^2}}$

$$(-\infty, -2) \cup (2, \infty)$$

$$(-2, 2)$$

$$[-2, 2]$$

$$(-\infty, 2)$$

41. If the graph of $y = x^2 - 1$ is compress horizontally by a factor of 2. An equation for the new graph is

$$y = \frac{1}{2}x^2 - \frac{1}{2}$$

$$y = \frac{1}{4}x^2 - 1$$

$$y = 4x^2 - 1$$

$$y = 2x^2 - 2$$

42. If the graph of $y = \sqrt{4-x}$, is reflected across the y-axis, then an equation of the new graph is

$$y = \sqrt{4+x}$$

$$y = -\sqrt{4-x}$$

$$y = \sqrt{-4 + x}$$

$$y = -\sqrt{4+x}$$

43. If the domain of y = f(x) is [-2, 6] and g(x) = f(x-2), then domain g is

[-4, 4]

[0, 8]

[-4, 12]

[-1, 3]

44. Let $f(x) = \frac{\sqrt{x-2}}{\sqrt{x-7}}$ Then domain f is

 $[2,\infty)$

 $(7,\infty)$

 \mathbb{R}

 $[7,\infty)$

45. Let
$$f(x) = \sqrt{\frac{x-2}{x+7}}$$
 Then domain f is

$$(-\infty, -7) \cup (2, \infty)$$

$$(-\infty,-7)\cup[2,\infty)$$

$$(2,\infty)$$

$$(-7,2)\cup(2,\infty)$$

Answers:

Points:

Percent:

Letter Grade:

Solutions to Quizzes

Solution to 1.

$$2x - 3 < -7 \qquad \text{add } 3$$

$$2x < -7 + 3$$

$$2x < -4 \qquad \text{divide by } 2$$

$$x < -2$$

Hence the solution is $(-\infty, -2)$.

Solution to 2.

$$-2<\!2-2x<3$$

subtract 2

$$-4 < -2x < 1$$

divide by -2 and switch the inequality because we are dividing by negative number

$$2 > \qquad x > \frac{-1}{2}$$

rewrite the inequality

$$\frac{-1}{2} < \qquad x < 2$$

Hence the solution is (-1/2, 2).

Solution to 3.

First, we write $x^2 + 4x + 3 < 0$

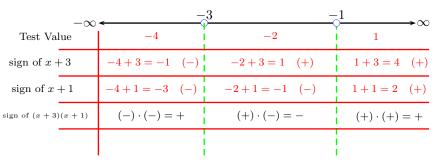
we are looking for (-) sign.

Second, set $x^2 + 4x + 3 = 0$ to find the zeroes.

We have (x+3)(x+1) = 0 by factor.

Hence x = -3, -1.

Third, use the real line to find the sign of x + 3 and x + 1.



Hence the solution is (-3, -1).

Solution to 4.

$$|2x+1| < 1 \Leftrightarrow -1 < 2x+1 < 1$$
 Use $|x| < k \Leftrightarrow -k < x < k$.
 $\Leftrightarrow -2 < 2x < 0$ subtract 1 from all sides
 $\Leftrightarrow -1 < x < 0$ divide all sides by 2

Hence the interval is (-1,0).

Solution to 5.

$$|2x+1| > 2 \Leftrightarrow 2x+1 > 2$$
 or $2x+1 < -2$.
 $\Leftrightarrow 2x > 1$ or $2x < -3$
 $\Leftrightarrow x > \frac{1}{2}$ or $x < \frac{-3}{2}$

Hence the interval is $(-\infty, -3/2) \cup (1/2, \infty)$.

Solution to 6. Since $\frac{x-1}{x}$

Since $\frac{x+2}{x-2} \ge 0$, then we are looking

for (+) sign. Next, we find the zeros of the numerator and the denominator. The real zeros of the numerator and the denominator are $x+2=0 \Leftrightarrow x=-2$ and $x-2=0 \Leftrightarrow x=2$. So the expression's test intervals are $(-\infty,-2],[-2,2)$, and $(2,\infty)$. We excluded -2 because we have bigger than sign and excluded 2 because it makes the denominator equal zero and dividing by zero is not allowed. Now, we use the real line to find the sign of x+2 and x-2.

-∞	-2		2
Test Value	-3	0	3
sign of $x+2$	-3+2=-1 (-)	0+2=2 (+)	3+2=5 (+)
sign of $x-2$	-3-2=-5 (-)	0-2=-2 (-)	3-2=1 (+)
sign of $(x+2)/(x-2)$	(-)/(-) = +	(+)/(-) = -	(+)/(+) = +

We find the (+)signs in the interval $(-\infty, -2]$ or $(2, \infty)$. Hence the solution is $(-\infty, -2] \cup (2, \infty)$.

Solution to 7.

$$d((5,2),(1,-1)) = \sqrt{(5-1)^2 + (2-(-1))^2}$$

$$= \sqrt{(4)^2 + (3)^2}$$

$$= \sqrt{16+9}$$

$$= \sqrt{25}$$

$$= 5.$$

Solution to 8. The graph of $y = \sqrt{x}$ is shifted to the left 2 units and up one unit. Now, left 2 units means replace x by x + 2 and up 1 unit means add 1. Hw=ence the equation is $y = \sqrt{x+2} + 1$.

Solution to 9. Clearly it is the graph of y = x.

Solution to 10. The slope of the line through the points (3,-6) and (1,-1) is

$$m = \frac{\Delta y}{\Delta x} = \frac{-1 - (-6)}{1 - 3} = \frac{5}{-2} = -\frac{5}{2}.$$

Solution to 11. Since $m = \frac{\Delta y}{\Delta x} = \frac{-1}{2}$, this mean that to get another point from the point (1,2) just add (or subtract) $\Delta x = 2$ to the x-coordinate of the point (1,2) and add (or subtract) $\Delta y = -1$ to the y-coordinate of the point (1,2). Hence (1+2,2+(-1)) = (3,1) is a point on the line.

Solution to 12.

$$y - 3x - 1 = 0$$
 $9y + 3x = -6$
 $y = 3x + 1$ $9y = -3x - 6$
 $y = \frac{-1}{3}x - 3$
 $m_1 = 3$ $m_2 = \frac{-1}{3}$

Hence the lines are perpendicular.

Solution to 13. we find the slope of the line y - 2x = 1

$$y - 2x = 1$$
 Isolate y term.
 $y = 2x + 1$ Point-Slope form

Now, since the line is perpendicular to y-2x=1 then $m=\frac{-1}{2}$ and passes through the point (3,1).

$$y-y_1=m(x-x_1)$$
 Point-Slope form $y-1=-\frac{1}{2}(x-3)$ Substitute $y-1=-\frac{1}{2}x+\frac{3}{2}$ Simplify $y=-\frac{1}{2}x+\frac{3}{2}+1$ Simplify $Y=-\frac{1}{2}x+\frac{5}{2}$

Solution to 14. polynomial, hence

The function
$$f(x) = f(x) = x - 1$$
 is a

$$D(f) = \mathbb{R}.$$

Solution to 15.

$$f(x) = \sqrt{2x-3}$$
 is even root function.

Then it is defined if

$$2x-3 \ge 0$$
$$2x \ge 3$$
$$x \ge 3/2$$

Hence
$$D(f) = [3/2, \infty)$$
.

Solution to 16. The function is a rational function. The domain is $\mathbb{R} \setminus \{ \text{ zeros of } x^2 + 4 \}$. Now, if $x^2 + 4 = 0 \Leftrightarrow x^2 = -4$, but this is impossible because the square of any real number is bigger than or equal to zero and never negative. Hence $x^2 + 4 \neq 0$. Hence $D(f) = \mathbb{R}$.

Solution to 17. The function $f(x) = \sqrt[3]{x^2 - 1}$ is an odd function and hence $D(f) = \mathbb{R}$.

Solution to 18. The function is a rational function. The domain is $\mathbb{R} \setminus \{ \text{ zeros of } x^2 - x - 6 \}$.

$$x^{2} - x - 6 = 0$$

$$(x - 3)(x + 2) = 0$$

$$x - 3 = 0 \text{ or } x + 2 = 0.$$

$$x = 3 \text{ or } x = -2.$$

Hence
$$D(f) = \mathbb{R} \setminus \{-2, 3\} = (-\infty, -2) \cup (-2, 3) \cup (3, \infty).$$

Solution to 19.

$$f(-x) = 4(-x)^3 - 5(-x)^5$$

$$= -4x^3 + 5x^5 \neq f(x) \text{ not even}$$

$$-f(-x) = -(-4x^3 + 5x^5) = 4x^3 - 5x^5 = f(x)$$

Hence f is odd.

Solution to 20. Looking at the graph we can see that any vertical line between -1 and 1, -1, 1, are no included is going to intersects the graph of f and any vertical line between 2 and 4 2, 4 are included is going to intersects the graph of f Hence the domain of f is $(-1, 1) \cup [2, 4]$

Solution to 21. To determine the points of intersection of the two graphs, we set the two functions equal and solve for x:

$$x^{2} - 2x + 4 = 3x - 2$$

$$x^{2} - 5x + 6 = 0$$

$$(x - 3)(x - 2) = 0$$

$$x - 3 = 0 \text{ or } x - 2 = 0$$

$$x = 3 \text{ or } x = 2.$$

Now, if $x = 2 \Rightarrow y = 3(2) - 2 = 6 - 2 = 4$, and if $x = 3 \Rightarrow y = 3(3) - 2 = 9 - 2 = 7$. Hence the points of intersection are (2, 4), (3, 7).

Solution to 22.

$$120^{\circ} = 120^{2} \cdot \frac{\pi}{180^{3}}$$
$$= \frac{2\pi}{3}$$

Solution to 23.

$$\frac{4\pi}{3} = \frac{4\pi}{3} \cdot \frac{180^{60}}{\pi}$$
$$= 4 \cdot 60 = 240^{\circ}$$

Solution to 24. We see from the table below that

$$\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}.$$

\boldsymbol{x}	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin x$	0	1/2	$1/\sqrt{2}$	$\sqrt{3}/2$	1
$\cos x$	1	$\sqrt{3}/2$	$1/\sqrt{2}$	1/2	0

Solution to 25. Since $\frac{5\pi}{3} = 2\pi - \frac{\pi}{3}$, hence $\frac{5\pi}{3}$ lies in the fourth quadrant. Therefore $\sin\left(\frac{5\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$.

Another Solution:

$$\sin\left(\frac{5\pi}{3}\right) = \sin\left(2\pi - \frac{\pi}{3}\right)$$

$$= \sin\left(2\pi\right)\cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{3}\right)\cos\left(2\pi\right)$$

$$= (0)(\frac{1}{2}) - (\frac{\sqrt{3}}{2})(1)$$

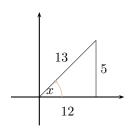
$$= -\frac{\sqrt{3}}{2}$$

Solution to 26. cos(-x) = cos x

Since $\cos x$ is an even function, then

©Dr. Hamed Al-Sulami

Solution to 27. Since $\tan x = \frac{5}{12} = \frac{\text{opposite}}{\text{adjacent}}$ we draw a triangle is shown to the right: Now, $H^2 = 5^2 + 12^2 = 25 + 144 = 169 \Rightarrow H = 13$. Since $x \in \left(0, \frac{\pi}{2}\right)$, then $\sin x \geq 0$ and $\cos x \geq 0$. Hence $\cos x = \frac{12}{13}$.



Solution to 28.

$$(g-f)(x) = g(x) - f(x)$$
 by definition.
$$= \sqrt{x-1} - (x^2+1)$$

$$= \sqrt{x-1} - x^2 - 1.$$

Solution to 29. The function $f(x) = \sqrt{x-3}$ is an even root function, hence f is defined if

$$x - 3 \ge 0 \Leftrightarrow x \ge 3$$
.

Hence $D(f) = [3, \infty)$. The function g(x) = x - 5, is a polynomial, hence $D(g) = \mathbb{R}$. Now,

$$\begin{split} D(f/g) &= (D(f) \cap D(g)) \setminus \{x : g(x) = 0\} \\ &= (\mathbb{R} \cap [3, \infty)) \setminus \{x : x - 5 = 0\} \\ &= [3, \infty) \setminus \{x : x - 5 = 0\} = [3, \infty) \setminus \{5\} \\ &= [3, 5) \cup (5, \infty). \end{split}$$

Solution to 30. The function $f(x) = \sqrt{25 - x^2} - \sqrt{x^2 - 4}$

is the difference of $\sqrt{25-x^2}$ and $\sqrt{x^2-4}$.

Hence
$$D(f) = D(\sqrt{25 - x^2}) \cap D(\sqrt{x^2 - 4}).$$

The function $\sqrt{25-x^2}$ is an even root function, then

$$25 - x^2 \ge 0 \Leftrightarrow x^2 \le 25$$

move x^2 to the other side

$$\Leftrightarrow \sqrt{x^2} \le 5$$

 $\Leftrightarrow \sqrt{x^2} < 5$ take the square root

$$\Leftrightarrow |x| \le 5$$

 $\Leftrightarrow |x| < 5$ $\sqrt{x^2} = |x|$ use properties of

$$\Rightarrow -5 \le x \le 5$$
 a

 \Leftrightarrow -5 < x < 5 absolute value inequality

Hence
$$D(\sqrt{25-x^2}) = [-5, 5].$$

The function $\sqrt{x^2-4}$ is an even root function, then

$$x^2 - 4 \ge 0 \Leftrightarrow \sqrt{x^2} \ge 2$$

take the square root

$$\Leftrightarrow |x| \ge 2$$

 $\Leftrightarrow |x| > 2$ $\sqrt{x^2} = |x|$ use properties of

$$\Leftrightarrow x > 2 \text{ or } x < -2$$

 $\Leftrightarrow x > 2$ or x < -2 absolute value inequality

Hence
$$D(\sqrt{x^2 - 4}) = (-\infty, -2] \cup [2, \infty)$$
.

$$D(f) = D(\sqrt{25 - x^2}) \cap D(\sqrt{x^2 - 4})$$

= $[-5, 5] \cap (-\infty, -2] \cup [2, \infty)$
= $[-5, -2] \cup [2, 5].$

©Dr. Hamed Al-Sulami

Solution to 31.

$$(f \circ g)(x) = f(g(x))$$

$$= f(\sqrt{x+3})$$

$$= (\sqrt{x+3})^2 - 1$$

$$= x+3-1 = x+2.$$

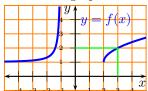
Solution to 32. $D(f \circ g) = D(g) \cap D(f(g(x)))$. Since $(f \circ g)(x) = f(g(x)) = x + 2$, then $D(g(f(x))) = \mathbb{R}$. Since $g(x) = \sqrt{x + 3}$, is an even root function, then $x + 3 \ge 0 \Leftrightarrow x \ge -3$. Hence $D(f) = [-3, \infty)$. $D(f \circ g) = D(g) \cap D(f(g(x)))$ $= [-3, \infty) \cap \mathbb{R}$

 $=[-3,\infty).$

Solution to 33.

$$(g \circ f)(x) = g(f(x))$$
$$= g(\sqrt{x})$$
$$= \sqrt{\sqrt{x} - 1}.$$

Solution to 34. From the graph we see that f(3) = 2.



Solution to 35.

$$(g \circ f)(x) = g(f(x))$$

$$= g(x^{2} - 1)$$

$$= \sqrt{x^{2} - 1 + 3} = \sqrt{x^{2} + 2}.$$

Solution to 36.
$$D(g \circ f) = D(f) \cap D(g(f(x)))$$
. Since

$$(g \circ f)(x) = g(f(x)) = \sqrt{x^2 + 2}$$
, then $D(g(f(x))) = \mathbb{R}$.
Since $f(x) = x^2 - 1$ is a polynomial than $D(f) = \mathbb{R}$

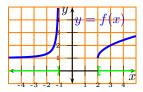
Since
$$f(x) = x^2 - 1$$
, is a polynomial, then $D(f) = \mathbb{R}$.

$$D(g \circ f) = D(f) \cap D(g(f(x)))$$
$$= \mathbb{R} \cap \mathbb{R}$$

$$= \mathbb{R}.$$

Solution to 37. Looking at the graph we see that

$$D(f) = (-\infty, -1) \cup [2, \infty).$$



Math110-BB

Exam One

Solution to 38. You should do it yourself......good luck

Math110-BB

Exam One

Solution to 39. You should do it yourself......good luck

Solution to 40. The function $f(x) = \frac{x^2 - 1}{\sqrt{4 - x^2}}$ is the quotient of $x^2 - 1$ and $\sqrt{4 - x^2}$. Since $x^2 - 1$ is a polynomial, hence $D(x^2 - 1) = \mathbb{R}$. The function $\sqrt{4 - x^2}$ is defined if

$$4 - x^{2} \ge 0 \Leftrightarrow -x^{2} \ge -4$$
$$\Leftrightarrow x^{2} \le 4$$
$$\Leftrightarrow |x| \le 2$$
$$\Leftrightarrow -2 \le x \le 2.$$

Hence $D(\sqrt{4-x^2}) = [-2, 2]$. Thus

$$D(f) = \{D(x^2 - 1) \cap D(\sqrt{4 - x^2})\} \setminus \{x : \sqrt{4 - x^2} = 0\}$$
$$= \{\mathbb{R} \cap [-2, 2]\} \setminus \{x : 4 - x^2 = 0\}$$
$$= [-2, 2] \setminus \{-2, 2\} = (-2, 2).$$

Solution to 41. Since the graph compressed horizontally by factor of 2. We replace x by 2x in the original equation. So we get $y = (2x)^2 - 1 = 4x^2 - 1$.

Solution to 42. Reflection about the y-axis mean replace x by -x in the original equation.

Thus
$$y = \sqrt{4 - (-x)} = \sqrt{4 + x}$$
.

Solution to 43. g is the shift of f to the right 2 units.

Hence D(g) = 2 + D(f) = 2 + [-2, 6] = [0, 8]

Solution to 44. The $f(x) = \frac{\sqrt{x-2}}{\sqrt{x-7}}$ is the quotient of

$$\sqrt{x-2}$$
 and $\sqrt{x-7}$. Hence $D(f) = D(\sqrt{x-2}) \cap D(\sqrt{x-7})$
Now $x-2 \ge 0 \Leftrightarrow x \ge 2$ hence $D(\sqrt{x-2}) = [2, \infty)$ and

Now,
$$x-2 \ge 0 \Leftrightarrow x \ge 2$$
, hence $D(\sqrt{x-2}) = [2, \infty)$ and $x-7 \ge 0 \Leftrightarrow x \ge 7$, hence $D(\sqrt{x-7}) = [7, \infty)$.

Thus
$$D(f) = D(\sqrt{x-2}) \cap D(\sqrt{x-7}) \setminus \{x : x-7=0\} = [2,\infty) \cap [7,\infty) \setminus \{7\} = (7,\infty)$$

Solution to 45. The function $f(x) = \sqrt{\frac{x-2}{x+7}}$ is an even

root function, hence $\frac{x-2}{x+7} \ge 0$ (we are looking for (+) sign).

Now, to solve the inequality $\frac{x-2}{x+7} \geq 0$, we find the zeros of the numerator and the denominator. $x-2=0 \Rightarrow x=2$ is the zero of numerator and $x+7=0 \Leftrightarrow x=-7$ is the zero of the denominator. Now, we use the real line to find the sign of each expression x-2 and x+7.

	-~		7	2
Test Va	lue	-8	0	3
sign of x	- 2	-8 - 2 = -10 (-)	0-2=-2 (-)	3-2=1 (+)
sign of x	+ 7	-8 + 7 = -1 (-)	0+7=7 (+)	3 + 7 = 10 (+)
sign of $\frac{x-2}{x+7}$		(-)/(-) = +	(-)/(+) = -	(+)/(+) = +

Hence
$$D(f) = (-\infty, -7) \cup [2, \infty)$$
.