King Abdulaziz University **Faculty of Sciences Physics Department**

First Term 1432-1433 H

Date: 10/ 1/ 1433H

Name: ID No: Section:

CHOOSE THE CORRECT ANSWER

- 1. A girl of mass 50 kg standing in a stationary elevator, her **weight** is:

- a) 490 N b) 550 N c) 245 N d) 392 N
- **2.** Three forces act on a 2 kg object give it an acceleration $\vec{a} = -8\hat{i} + 6\hat{j}$. if $\vec{F_1} = 30\hat{i} + 16\hat{j}$ and $\vec{F_2} = -12\hat{i} + 8\hat{j}$ the **third force** is
 - a) $\vec{F}_3 = 34\hat{i} + 12\hat{j}$

c) $\vec{F}_3 = -30\hat{i} - 6\hat{j}$

- **b**) $\vec{F}_2 = -34\hat{i} 12\hat{j}$
- **d**) $\vec{F}_{2} = 8\hat{i} 16\hat{i}$
- 3. A particle in uniform circular motion of radius r = 2m moved one period. **The** distance that the particle travelled in meters is:
 - **a)** 4π **b)** 2π **c)** π **d)** 3π

- 4. A particle is said to be in uniform circular motion if
 - a) its velocity has a constant magnitude
 - **b**) its velocity has a constant direction
 - c) its velocity is directed towards the center
 - d) its velocity equals zero
- 5. 10.3 N is **equal to**
- **a)** $10.3 \frac{kg.m}{s^2}$ **b)** $10.3 \frac{kg.m^2}{s^2}$ **c)** $10.3 \frac{kg^2.m^2}{s^2}$ **d)** $10.3 \frac{kg.m}{s}$

- **6.** At the maximum height of a projectile, **what of the following is correct**?
 - a) Its velocity is zero

- c) Its x-component velocity is zero
- **b**) Its y-component velocity is zero
- d) Its acceleration is zero

Use the following to answer questions 7-9:

In the figure, a cord holds stationary a block of mass m = 8.5 kg on a frictionless plane that is inclined at an angle $\theta = 30^{\circ}$

- 7. The tension in the cord T equals:
- a) 72.14 N b) 83.3 N c) 53.14 N d) 41.65 N
- 8. The **normal Force** F_N acting on the block is
 - a) 53.14 N b) 41.65 N c) 83.3 N d) 72.14 N

- **9.** If the cord is cut, the magnitude of the **acceleration** of the block is

 - a) zero b) 4.9 m/s^2 c) 6 m/s^2 d) 4 m/s^2
- 10. A bag rests on a table, exerting a downward force on the table. The reaction to this force is:
 - a) The force of Earth on the bag
 - **b**) The force of the table on the bag
 - c) The force of the Earth on the table
 - **d**) The force of the bag on Earth

11. The figure shows a train of four blocks being pulled across a frictionless floor by force $\vec{F} = 60N$, what is the **magnitude** of the system's **acceleration?**

- **a)** 3 m/s^2 **b)** 6 m/s^2 **c)** 12 m/s^2 **d)** 20 m/s^2
- 12. The cable in the figure is raising a box of mass M = 250 kg with an upward acceleration of 4 m/s². The tension T in the cable is

- a) 863 N b) 1725 N c) 3450 N d) 6900
- 13. In the figure the **net force** on the block is:

- a) 1 N -right b) 6 N -up c) 3 N -left d) 4 N -down
- **14.** Ignoring air resistance, the **acceleration** of any projectile along the x-direction a_x in (SI units) is
 - a) 9.8 m/s^2 b) zero c) not constant d) less than zero
- 15. Three forces $\vec{F_1} = 3\hat{i} 4\hat{j}$, $\vec{F_2} = -3\hat{i} + 4\hat{j}$ and $\vec{F_3} = -6\hat{j}$ acting on a body, the value of $\mathbf{F}_{\mathsf{net},\mathsf{x}}$ and $\mathbf{F}_{\mathsf{net},\mathsf{y}}$ are:
 - a) $F_{net,x}$ = 6 N and $F_{net,y}$ = -8 N
 - **b**) $F_{\text{net},x} = -6 \text{ N} \text{ and } F_{\text{net},y} = 8 \text{ N}$
 - c) $F_{net,x}$ = 0 and $F_{net,y}$ = -6 N
 - d) $F_{net,x}$ = 9 N and $F_{net,y}$ = 16 N

16. Two forces $\vec{F_1} = 3\hat{i} - 4\hat{j}$ and $\vec{F_2} = -3\hat{i} + 4\hat{j}$ acting on a body, from the free body diagram the vectors that represent $\vec{F_1}$ and $\vec{F_2}$ are

- a) $\vec{F_1}$ is vector **1**, $\vec{F_2}$ is vector **3** c) $\vec{F_1}$ is vector **3**, $\vec{F_2}$ is vector **1** b) $\vec{F_1}$ is vector **2**, $\vec{F_2}$ is vector **4** d) $\vec{F_1}$ is vector **4**, $\vec{F_2}$ is vector **2**

Use the following to answer questions 17-20:

A block lies on a floor as shown in the figure

- 17. The magnitude of the frictional force on it from the floor when F = 0
 - a) 0 b) 5 N c) 20 N d) 8 N
- 18. When F pulls the block to the right with an acceleration a_x , The coefficient of Kinetic friction $\mu_{\scriptscriptstyle K}$ is:

a)
$$\mu_k = \frac{F - ma_x}{F_N}$$
 b) $\mu_k = \frac{F_N}{F - ma_x}$ **c)** $\mu_k = \frac{ma_x}{F_N}$ **d)** $\mu_k = \frac{ma_x - F}{F_N}$

- 19. The magnitude of the frictional force on it from the floor when F = 8 N, but the block does not move
 - a) 0 b) 5 N c) 20 N d) 8 N
- 20. If the maximum static frictional force $f_{s,max}$ = 20 N , the block will move to the right when F is equal to
 - a) 21 N b) 15 N c) 19 N d) 12 N

21. A car moves in a circular road of radius r = 7.6 m with a speed 96.6 km/h, the car's acceleration is:

a) $18.4 \times 10^3 \text{ km/h}^2$

c) $20.7 \times 10^3 \text{ km/h}^2$

b) $12.3 \times 10^5 \text{ km/h}^2$

d) $15.8 \times 10^2 \text{ km/h}^2$

22. Two boxes $m_1=10$ kg and $m_2=15$ kg, the gravitational force (Fg) on m_2

a) 25 N b) 245 N c) 2450 N d) 5 N

23. The position vector of a moving car in meters is: $\vec{r} = (3t^3)\hat{i} + (4t^2 + 3)\hat{j}$, its acceleration at t = 1 s is:

a) $\vec{a} = 18\hat{i} + 8\hat{j}$ **b)** $\vec{a} = 8\hat{i} + 18\hat{j}$ **c)** $\vec{a} = 9\hat{i} + 18\hat{j}$ **d)** $\vec{a} = 9\hat{i} + 8\hat{j}$

24. The position of a moving particle is $\vec{r} = \hat{i} + 4t^2 \hat{j} + t \hat{k}$, its **velocity** as a function of time is:

a) $\vec{v} = 8\hat{j}$ **b)** $\vec{v} = 8t \hat{j} + \hat{k}$ **c)** $\vec{v} = \hat{i} + 8t \hat{j} + \hat{k}$ **d)** $\vec{v} = 8t \hat{j}$

25. According to Newton's second law, the **force and acceleration** are:

a) in the opposite direction. c) perpendicular to each other.

b) in the same direction.

d) scalar quantities.

26. The position of a particle was initially at $\vec{r} = 5\hat{i} - 6\hat{j} + 2\hat{k}$ and later at $\vec{r} = -2\hat{i} + 6\hat{j} + 2\hat{k}$. The particle's **displacement vector** is:

 $\mathbf{a)} \quad \Delta \vec{r} = -7\hat{i} + 12\hat{j}$

b) $\Delta \vec{r} = 3\hat{i} + 4\hat{j}$

c) $\Delta \vec{r} = 7\hat{i} - 12\hat{j}$ d) $\Delta \vec{r} = 3\hat{i} + 12\hat{j} + 4\hat{k}$

27. A rabbit runs across a field. The coordinates of the rabbits position as a function of time are given by: $x = -2t^2 + 10t + 30$, and $y = t^2 - 5t + 10$ at t = **10 s** the **position vector** \vec{r} is:

a)
$$\vec{r} = 70\hat{i} - 60\hat{j}$$

c)
$$\vec{r} = -60\hat{i} + 70\hat{j}$$

d) $\vec{r} = -70\hat{i} + 60\hat{j}$

b)
$$\vec{r} = 60\hat{i} - 70\hat{j}$$

d)
$$\vec{r} = -70\hat{i} + 60\hat{j}$$

Use the following to answer questions 28-30:

A ball rolls horizontally off the top of a building with a speed of 30 m/s. If the ball landed on the ground in a time t = 3.03 s

28. The **height of the building** from the ground is

29. At what horizontal distance from the rolling point does the projectile strikes the ground

$$\mathbf{a)} \ \ 9.9 \ m \quad \mathbf{b)} \ \ 90.9 \ m \quad \mathbf{c)} \ \ 0.9 \ m \quad \mathbf{d)} \ \ 99 \ m$$

30. What is the magnitude of the vertical component of its velocity as it strikes the ground

a) 2.9 m/s

			,
b)	0.31	m/	'S

31. A block of mass M is connected to a block of mass m as shown. The **normal** force on block M is:

a)
$$F_N = Mg$$
 b) $F_N = Mg - T$ c) $F_N = mg - T$ d) $F_N = mg$

c)
$$F_N = m a - T$$

d)
$$F_N = m c$$

32. A particle moves from $\vec{r_1} = (-10m)\hat{k}$ to $\vec{r_2} = (24m)\hat{i}$ in 2 s. Its **average** velocity is:

$$\mathbf{a)} \quad \vec{v}_{avg} = \left(24 \frac{m}{s}\right) \hat{i} + \left(10 \frac{m}{s}\right) \hat{k}$$

a)
$$\vec{v}_{avg} = \left(24\frac{m}{s}\right)\hat{i} + \left(10\frac{m}{s}\right)\hat{k}$$
 c) $\vec{v}_{avg} = \left(-10\frac{m}{s}\right)\hat{i} + \left(24\frac{m}{s}\right)\hat{k}$ **b)** $\vec{v}_{avg} = \left(12\frac{m}{s}\right)\hat{i} + \left(5\frac{m}{s}\right)\hat{k}$ **d)** $\vec{v}_{avg} = \left(-5\frac{m}{s}\right)\hat{i} + \left(12\frac{m}{s}\right)\hat{k}$

b)
$$\vec{v}_{avg} = \left(12\frac{m}{s}\right)\hat{i} + \left(5\frac{m}{s}\right)\hat{k}$$

d)
$$\vec{v}_{avg} = \left(-5\frac{m}{s}\right)\hat{i} + \left(12\frac{m}{s}\right)\hat{k}$$

- 33. A force F is applied to an object of mass m_1 = 45 kg produces an acceleration of 2 m/s². The same force is applied to a second object of mass m₂ produces an acceleration of 1.5 m/s². The value of m₂ is

- **a)** 45 kg **b)** 60 kg **c)** 30 kg **d)** 67 kg

Answer Key

- **1.** a
- **2.** b
- **3.** a
- **4.** a
- **5.** a
- **6.** b
- **7.** d
- **8.** d
- **9.** b
- **10.** b
- **11.** a
- **12.** c
- **13.** c
- **14.** b
- **15.** c
- **16.** d
- **17.** a
- **18.** a
- **19.** d
- **20.** a
- **21.** b
- **22.** b
- **23.** a
- **24.** b
- **25.** b
- **26.** a
- 27. d 28. a
- **40.** a
- **29.** b
- **30.** d **31.** a
- **32.** b
- **33.** b