Modeling Difficulties

I 11|

m Poorly Known Processes
- V-L and L- L thermodynamic equlb. In multi-component distillation
- Multi-component reaction systems

- Interaction between heat , mass and momentum

®m Error in model parameters
- U (over all heat transfer coefficient)
- T,
- K, and E in k=k_ eF/RT

m  Complexity of model (
Distillation column with N trays need [ 2N+4] equations

N

Accurate model Complex



Input-Output Model

m Convenient for control purposes
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Solution of ODEs

I _ I I I .I I : I I .I [T | I.
m Modeling results in nonlinear sets of ordinary differential equations

m Solution requires numerical integration

m To get solution, we must first:
- specify all constants (densities, heat capacities, etc, ...)
- specify all initial conditions
- specify types of perturbations of the input variables

For the heated stirred tank,

ar _For _—1my+ 2
dr \% rvC

- specify p, Cp and V
- specify T(0)
- specify Q(t) and F(t)



Input Specifications

m Study of control system dynamics

Observe the time response of a process output to input
changes

m Focus on specific inputs

1. Step input signals

2. Ramp input signals

3. Pulse and impulse signals
4. Sinusoidal signals

5. Random (noisy) signals



Common Input Signals

1. Step Input Signal: a sustained instantaneous change

e.g. Unit step input introduced at time 1




Common Input Signals

2. Ramp Input: A sustained constant rate of change

e.g.




Common Input Signals

3. Pulse: An instantaneous temporary change

e.g. Fast pulse (unit impulse)




Common Input Signals

3. Pulses:

e.g. Rectangular Pulse




Common Input Signals

4. Sinusoidal input




Laplace Transform

F(s) = L(f(t)) = f f(H)e-st dt
0

f(t) has to be at least stepwise continLes
It 1s transform. from time domain (t) to Laplace domain (s)

S= a+bj ]

b
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0 = tan-!(b/a) 0 -]




Common Transforms

1. Constant £ = a
[S[a] = Tae_Stdt = (—ae %)60 = A
O

O r < O
a 7 = 0O

2. Step (@) = {

IS (] = {)ae‘“dt = (—ae %ﬁf = A

3. Ramp function
r <O

r =0

O
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atrt
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S[f(t)]zofate_“dtz—e at} +O_fae dr =
O o O
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4. Rectangular Pulse
O r <O
f(@)=4a O0=r<rzt,,
@ r=>rz,,

tw
Slro)= | ae Stdr = 2(1_ e~ W)
O Y

5. Unit impulse

5[5(t)] = 1im i(l_e—tws)
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l. Exponentlal | | B

f()=e 7
S[e_bt] _ J-e—bte—stdt __ J-e—(s+b)tdt
O O
3[e—bt] _ e_(S+b)t _ 1
s+ b s+ b
2. Cosine
— jeor jeor
F (1) = cos(axr) = < 2+ <

S[COS(GI)] — ;{j‘e_(S—ja))tdt 4 j‘e—(s+j0))tdt}
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Common Transforms

TS | | [ | [ [ | [
3. Sine (mt)
' Ot — Jjaor
F (2> = sinary =< —<
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Common Transforms

1. Derivative of a function £(t)

df (1)
dt
du =df
v =e ¥
df

“l=w]g - judv_f(z)e‘“] - j( sf (e *)dt

f - sTf(t)e‘“dt _ F(0) = sF(s)— £(O0)

2. Integral of a function {(t)

oo 4
S| [ f(Ddr | = [e (] f(Drdrydr = T

0 0 S




Laplace Transforms

Final Value Theorem

m [y()] = lim[sY(s)]
s—>0

I —> oo

Initial Value Theorem

y(O) = 1lim [SY(S)]

Ss—> oo




Algorithm for Solution of ODEs

Take Laplace Transform of both sides of ODE and boundary
conditions.

Solve for Y(s)=p(s)/q(s)

Factor the characteristic polynomial q(s)

Perform partial fraction expansion

Inverse Laplace using Tables of Laplace Transforms



Partial fraction Expansions

1. g(s) has real and distinct roots

(s> = T1Cs+ ;)

=1

expand as
71 O :
r¢s) = 2> :
i=15 + b;

2. q(s) has real but repeated roots

q(s) = (s+b)”

expanded




® ((s) has imajnary roots

roots comes in the form of complex conjugates:

r,r,=a*x bi

a = real part

b = 1maginary part

ol ol
+
s+ ail S - bl

1(s) =

General solution :
Y (1) =CiePlt+ CreP2+.....C eP + C, e Pty CtePl?t+ .

-pm-1 t -at * bit
Cit.€P + Ce+C,, e”



Example 8.1

a, d’y/dt>+ a, dy/dt + a y(t) = f(t)
f(t) 1s a unit step (f(t)=1)

y(0) =y (0) =0

cas 1: a,=4, a,=1, a.=3
r=0, r,=r;=1

cas 2: a,;=2, a,=1, a=1
r,=0,r,=-1,1r;=-3

cas 3: a,=2, a,=2, a=1

r,=0,r,=-1,1;=-3



Transter Functions

A linear, n-order system is:

dn dn—ly dy
a —+a v +a—+av=>bf(t
dz" b dr! bdy 0¥ =b 1 (0)

With initial conditions: y(0)=y (0)=y " (0)=...... y@-D*(0) =0

a_s"y(s)+a,_s™ly(s)+s"?y(s)...... +a,8y(s)+ a, y(s) = b f(s)

y(s)(@a s"+a_ s™I4+s"2, ... +a,8+ ay, = b f(s)
y(s) = b = g(s) =_QOutput
f(s) (a,s"+a,_ s"1+...+a,s+ a,) Input

g(s) 1s the transfer function



y(8) = g(s) *(s)

> g(s)
f,(s) y(s)
For two 1nputs f, and f,:
b, f,(s) b, 1,(s)
y(s) = +

(a,s"+a, s"1+...+a;s+ a)) (a,s"+a, s"1+...+a;s+ a))



y(s) = gi(s) *t(s) +  g,(s) *f,(s)

f;(s)

2,(s)

y(s)

> 25(8)

fz(s)

Note that the denominator of g,(s) and g,(s) are the same.

It 1s called characteristic equation.



Poles and zeros of Traster Function

Q(s)
P(s)

g(s) =

P(s) = Characteristic Polynomial

Q(s) has a lower order than P(s)

Roots of Q(s) are called zeros of T.F. (g(s)=0 at zeros)
Roots of P(s) are called poles of T.F. (g(s)= oo at poles)

They play important roles in dynamics

y(s) IR
) g(s) y(s) = g(s)* 1(s)

If f(t)is given take L. T. of f(t) y(t) = L [g(s)* f(s)]



o - 90 s
P(s) (s-py) (5-p5) (8-p3)™ (s-py) (s-p7y)

wher py, P, P3, Ps» P 4 are roots of P(s)

| l
g(s) = Q(S): C, _|_C9 +C31 +C29 4 $3m _|__£L- &
P(s) (s-p) (s-pp) (s-p3) (s-p3)*  (s-p3)™ (s-py) (S "))

f(t) =C f(s) = C/s

y(©) = L [g(s)* f(s)] = L [g(s)* C/s]



y(t) = Cy+C,CPIt +C, €P% + [Cy i+ Cyy t +Cyy t2+....4C, ™ 1] €93 + C,CPH
2 (m-1)!

+C" ,Crat
p, = a+ bj
P*4 =a-bj

Crit = Clabt = Cat Chit = Cat [cos(bt) + j sin (bt)]
Crt = Clabit = Cat €-bit = €2t [cos(bt) - j sin (bt)]

y(t) 1s stable 1f all poles and the real parts of the complex conjugates are

negatives (p; and a, < 0) > y(t)=Cyast —o0
y(t) 1s unstable if any of p, and a, are >0 —— y(t) — 0 ast—o0

y(t) 1s marginally stable of all p. and a, =0



First-order systems

Time-domain mode/
First order process

Laplace-domain mode/

(a, # 0, dividing by g, )




m K, (b/a, is the process steady state gain (it can be >0 or <0)
m T, (a,/a,) 1s the process time constant (it 1s always >0)

m Transfer function of a first-order system:

KP
Tps+1

G(s)=



Response of first-order systems

® We only consider the response to a step forcing
function of amplitude A

The time-domain

T response is:

= "

n | y(t) = AKP(I—e ]
(:) I

T

> A




Determining the process gain

An open-loop test can be performed starting from

the reference steady state:
= step the input to the process

= record the time profile of the measured output until a
new steady state is approached

—t/Tp
= check if this profile resembles y(#)=AK,(1—-e )
s if so, calculate K, as:

K = yss,new o yss,ref . (A(OUIPUI )j
P — —
steady state

A(input )

unew B uref




Determining the time constant

® From the same open-loop test:

= determine T, graphically (note: it has the dimension of time)

Determining the values
of K, and t,from
process data is known
as process identification




Pure capacity process
dy
a, E+a0y — bf(f)
Let a; =0 then

d
a, d_i; =b f(t) divide by a, gives((ll—f =(b/a,) f(t)

4y _ g f(t) take L.T.
dt

y(s) =K'/s Pure capacity process



Second-order systems

®m Time-domain representation:

d*y dy
——+a,y =bu(t
472 17 0y (7)

a,

Dividing by a, where a, # 0

@,/a,) 2 +(a,1a)) 2+ y = (b7 apu(r)
dr’ [
d2
d 2{1‘ + y = Kpu(t)
t”

T =

=

K, = process gain

natural period

damping coefficient



Laplace-domain representation: ®

Y(s) K
U(s) 75" +20ts+1

Three cases of processes:

Overdamped &1
Critically Damped =1
Underdamped &1

Note: Chemical processes are typically overdamped or
critically damped



Second Order Processes

m Roots of the characteristic polynomial

—2&T =+ \/45272 — a2
2=

S, 1 >
——i;\/é‘ —1

T

Case 1) &>1: Two distinct real roots

System has an exponential behavior

Case 2) &=1: One multiple real root
Exponential behavior

Case 3) E<1: Two complex roots

System has an oscillatory behavior



Overdamped systems (E>1)

Open-loop
response to a

] input step

disturbance
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t/ =
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Underdamped systems (E<

y

0 2 4 6 8
t/ =
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Open-loop
response to a
input step
disturbance



Second order Processes

Step response of magnitude M

Y(S) = K, M
T?s> +2&s+1 s




Characteristics of underdamped second order process
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Characteristics of underdamped second order process

1. Rise time, t.
2. Settling time (response time), t,
3. Overshoot:

_ A x| S
OS—b—e p[ \/l—fzﬂj
5. Decay ratio:
_ € axp| - 27S
DR—b—e p[ \/1_§2j

Period of oscillation (T)

T=2a7 / (1-&) 2 o =radian frequency =(1-£2) 2 /T

/



