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Angular velocity: twenty-four ways to spin a book.

Overview While many natural processes can be modeled by linear systems of ODEs, others
require nonlinear systems. Fortunately, some of the ideas used to understand lin-
ear systems can be modified to apply to nonlinear systems. In particular, state (or
phase) spaces and equilibrium solutions (as well as eigenvalues and eigenvectors)
continue to play a key role in understanding the long-term behavior of solutions.
You will also see some new phenomena that occur only in nonlinear systems. We
restrict our attention to autonomous equations, that is, equations in which time
does not explicitly appear in the rate functions.

Key words Nonlinear systems of differential equations; linearization; direction fields; state
(phase) space; equilibrium points; Jacobian matrices; eigenvalues; separatrices;
bifurcations; limit cycles; predator-prey; van der Pol system; saxophone; spinning
bodies; conservative systems; integrals; angular velocity; nonlinear double pendu-
lum

See also Chapter 6 for background on linear systems and Chapters 8–10 and 12 for more
examples of nonlinear systems.
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◆ Linear vs. Nonlinear

In modleing a dynamical process with ODEs we aim for a model that is both
reasonably accurate and solvable. By the latter we mean that there are either
explict solution formulas that reveal how solutions behave, or reliable numeri-
cal solvers for approximating solutions. Constant-coefficient linear ODEs and
linear systems have explicit solution formulas (see Chapters 4 and 6), and that
is one reason linearity is widely assumed in modeling. However, nonlinearity
is an essential feature of many dynamical processes, but explicit solution for-
mulas for nonlinear ODEs are rare. So for nonlinear systems we turn to the
alternative approaches and that’s what this chapter is about.

◆ The Geometry of Nonlinear Systems

Let’s start with the linear system of ODEs that models the motion of a cer-
tain viscously damped spring-mass system that obeys Hooke’s Law for the
displacement x of a unit mass from equilibrium:

x′ = y, y′ = −x − 0.1y (1)

In Chapter 4 we saw that the equivalent linear second-order ODE, x′′ +0.1x′ +
x = 0 has an explicit solution formula, which we can use to determine the be-
havior of solutions and of trajectories in the xy-phase plane.

Now let’s suppose that the Hooke’s-law spring is replaced by a stiffening
spring, which can be modeled by replacing the Hooke’s-law restoring force
−x in system (1) with the nonlinear restoring force −x − x3. We obtain the
system

x′ = y, y′ = −x − x3 − 0.1y (2)

As in the linear system (1), the nonlinear system (2) defines a vector (or di-
rection) field in the xy-state (or phase) plane. The field lines are tangent to
the trajectories (or orbits) and point in the direction of increasing time.

There are no solution formulas for system (2), so we turn to direction
fields and ODE Architect for visual clues to solution behavior. As you can
see from Figure 7.1, the graphs generated by ODE Architect tell us that the
trajectories of both systems spiral into the equilibrium point at the origin as☞ The equilibrium points of

a system correspond to the
constant solutions, that is, to the
points where all the rate
functions of the system are zero.

t → +∞, even though the shapes of the trajectories differ. The origin corre-
sponds to the constant solution x = 0, y = 0, which is called a spiral sink for
each system because of the spiraling nature of the trajectories and because the
trajectories, like water in a draining sink, are “pulled” into the origin with the
advance of time. This is an indication of long-term or asymptotic behavior.
Note that in this case the nonlinearity does not affect long-term behavior, but
clearly does affect short-term behavior.
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✓ “Check” your understanding by answering these questions: Do the sys-
tems (1) and (2) have any equilibrium points other than the origin? How do
the corresponding springs and masses behave as time increases? Why does
the −x3 term seem to push orbits toward the y-axis if |x| ≥ 1, but not have
much effect if |x| is close to zero?

◆ Linearization

If we start with a nonlinear system such as (2), we can often use linear ap-
proximations to help us understand some features of its solutions. Our ap-
proximations will give us a corresponding linear system and we can apply
what we know about that linear system to try to understand the nonlinear sys-
tem. In particular, we will be able to verify our earlier conclusions about the
long-term behavior of the nonlinear spring-mass system (2).

The nonlinearity of system (2) comes from the −x3 term in the rate func-
tion g(x, y) = −x − x3 − 0.1y. In calculus you may have seen the following
formula for the linear approximation of the function g(x, y) near the point
(x0, y0):

☞ This is a finite Taylor
series approximation to g(x, y).

g(x, y) ≈ g(x0, y0) + ∂g
∂x

(x0, y0)(x − x0) + ∂g
∂y

(x0, y0)(y − y0) (3)

However, g(x0, y0) will always be zero at an equilibrium point (do you see
why?), so formula (3) simplifies in this case to

g(x, y) ≈ ∂g
∂x

(x0, y0)(x − x0) + ∂g
∂y

(x0, y0)(y − y0) (4)

Since we’re interested in long-term behavior and the trajectories of system (2)
seem to be heading toward the origin, we want to use the equilibrium point
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Figure 7.1: Trajectories of both systems have the same long-term, spiral-sink
behavior, but behavior differs in the short-term.
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Figure 7.2: Near the equilibrium at the origin trajectories and tx-component
curves of nonlinear system (2) and its linearization (1) are nearly look-alikes.

(x0, y0) = (0, 0) in formula (4). Near the origin, the rate function for our
nonlinear spring can be approximated by

g(x, y) ≈ −x − 0.1y

since ∂g/∂x = −1 and ∂g/∂y = −0.1 at x0 = 0, y0 = 0. Therefore the non-
linear system (2) reduces to the linearized system (1). You can see the ap-
proximation when the phase portraits are overlaid. The trajectories and tx-
component curves of both systems, issuing from a common initial point close
to the origin, are shown in Figure 7.2. The linear approximation is pretty☞ Linear and nonlinear

look-alikes. good because the nonlinearity −x3 is small near x = 0. Take another look at
Figure 7.1; the linear approximation is not very good when |x| > 1.

✓ How good an approximation to system (2) is the linearized system (1) if
the initial point of a trajectory is far away from the origin? Explain what you
mean by “good” and “far away.”

In matrix notation, linear system (1) takes the form
[

x
y

]′
=

[
0 1

−1 −0.1

][
x
y

]
(5)

so the characteristic equation of the system matrix is λ2 + 0.1λ + 1 = 0. The
matrix has eigenvalues λ = (−0.1 ± i

√
3.99 )/2, making (0, 0) a spiral sink

(due to the negative real part of both eigenvalues). This supports our earlier☞ Look back at Chapter 6 for
more on complex eigenvalues
and spiral sinks.

conclusion that was based on the computer-generated pictures in Figure 7.2.
The addition of a nonlinear term to a linear system (in this example, a cubic
nonlinearity) does not change the stability of the equilibrium point (a sink in
this case) or the spiraling nature of the trajectories (suggested by the complex
eigenvalues).
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The linear and nonlinear trajectories and the tx-components shown in Fig-
ure 7.2 look pretty much alike. This is often the case for a system

x′ = F(x) (6)

and its linearization☞ The point x0 is an
equilibrium point of x′ = F(x) if
F(x0) = 0. x′ = A(x − x0) (7)

at an equilibrium point x0. Let’s assume that the dependent vector variable
x has n components x1, . . . xn, that F1(x), . . . , Fn(x) are the components of
F(x), and that these components are at least twice continuously differentiable
functions. Then the n × n constant matrix A in system (7) is the matrix of the
first partial derivatives of the components of F(x) with respect to the compo-
nents of x, all evaluated at x0:

A =




∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fn

∂x1
· · · ∂Fn

∂xn




x=x0

A is called the Jacobian matrix of F at x0, and is often denoted by J or J(x0).
As an example, look back at system (1) and its linearization, system (2) or
system (5).

It is known that if none of the eigenvalues of the Jacobian matrix at an☞ Here’s why linearization is
so widely used. equilibrium point is zero or pure imaginary, then close to the equilibrium point

the trajectories and component curves of systems (6) and (7) look alike. We
can use ODE Architect to find equilibrium points, calculate Jacobian matrices
and their eigenvalues, and so, check out whether the eigenvalues meet the
conditions just stated. If n = 2, we can apply the vocabulary of planar linear
systems from Chapter 6 to nonlinear systems. We can talk about a spiral sink,
a nodal source, a saddle point, etc. ODE Architect uses a solid dot for a sink,
an open dot for a source, a plus sign for a center, and an open square for a
saddle.

What happens when, say, the matrix A does have pure imaginary eigen-
values? Then all bets are off, as the following example shows.

Start with the linear system

x′ = y

y′ = −x

The system matrix has the pure imaginary eigenvalues ±i, making the origin
a center. Now give the system a nonlinear perturbation to get

x′ = y − x3

y′ = −x



Id: chapter7.tex,v 1.13 1998-06-30 02:53:51-07 drichard Exp ODE Architect Workbook Page 120 on June 30, 1998 at 3:06

120 Chapter 7

x-y

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Linear system

x-y

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Perturbed system
Figure 7.3: Nonlinear terms convert a linear center to a nonlinear sink.

By picturing the direction field defined by this system, we can see that each
vector has been nudged slightly inward, toward the origin. This causes so-☞ But linearity can be

misleading! lutions to spiral inward, making (0, 0) a spiral sink. Figure 7.3 shows tra-
jectories from the original linear system on the left, and a trajectory of the
nonlinear system on the right, spiraling inward. Now it should be clear why
we had to exclude pure imaginary eigenvalues!

✓ What happens if you perturb the linear system by adding the x3 term,
instead of subtracting? What about the system x′ = y − x3, y′ = −x + y3?

◆ Separatrices and Saddle Points

A linear saddle point has two trajectories that leave the point (as time in-
creases from −∞) along a straight line in the direction of an eigenvector.
Another two trajectories approach the point as time increases to +∞) along
a straight line in the direction of an eigenvector. These four trajectories are
called saddle separatrices because they divide the neighborhood of the sad-
dle point into regions of quite different long-term trajectory behavior. The left
plot in Figure 7.4 shows the four separatrices along the x and y axes for the
linear system

x′ = x, y′ = −y (8)

with a saddle point at the origin. The two that leave the origin as t increases
are the unstable separatrices, the two that enter the origin are the stable sep-
aratrices.

If we add some higher-order nonlinear terms to a linear saddle-point sys-
tem, the separatrices persist but their shapes may change. They still divide a
neighborhood of the equilibrium point into regions of differing long-term be-
havior. And, most important, they still leave or approach the equilibrium point
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Figure 7.4: Saddle separatrices lie along the axes in (a); two of the spearatri-
ces are bent to the rightt by a nonlinearity in (b).

tangent to eigenvectors of the linearized system. The right plot in Figure 7.4
suggests all this for the system (8) with a nonlinear term tacked on:

x′ = x − y2, y′ = −y (9)

Note how the nonlinearity bends two of the separatrices.

◆ Behavior of Solutions Away from Equilibrium Points

While we can use linearization in most cases to determine the long-term be-
havior of solutions near an equilibrium point, it may not be a good method
for studying the behavior of solutions “far away” from the equilibrium point.
Consider, for example, the spider-fly system of Module 7:

S′ = −4S + 2SF, F ′ = 3
(

1 − F
5

)
F − 2SF

where S is a population of spiders preying on F, a population of flies (all
measured in thousands). This nonlinear system has several equilibrium points,
one of which is at p∗ = (0.9, 2).

Take a look at the graphics windows in Experiment 2 of “The Spider and
Fly” (Screen 1.5). The trajectories of the linearized system that are close to p∗

approximate well those of the nonlinear system. However, trajectories of the
linearized system that are not near the equilibrium point diverge substantially
from those of the nonlinear system, and may even venture into a region of the
state space where the population of spiders is negative!

✓ Look at the Library file “Mutualism: Symbiotic Interactions” in the “Pop-
ulation Models” folder and investigate the long-term behavior of solution
curves by using linear approximations near equilibrium points.
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An attracting spiral sink (a = −1).
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A repelling spiral source and attract-
ing limit cycle (a = 1).

Figure 7.5: The system x′ = y + ax − x3, y′ = −x, undergoes a hopf bifurcation
to an attracting limit cycle as the parameter transists the value a = 0.

◆ Bifurcation to a Limit Cycle

The model equations for an electrical circuit (the van der Pol circuit) contain-
ing a nonlinear resistor, an inductor, and a capacitor, all in series, are☞ If you are not “into”

nonlinear electrical circuits,
ignore the modeling here and just
consider ODE (10) as a particular
nonlinear system.

x′ = y + ax − x3, y′ = −x (10)

where x is the current in the circuit and y is the voltage drop across the ca-
pacitor. The voltage drop across the nonlinear resistor is ax − x3, where a is
a parameter. The characteristics of the resistor, and thus the performance of
the circuit, changes when we change the value of this parameter. Let’s look☞ Current, voltages and time

are scaled to dimensionless
quantities in system (10).

at the phase portrait and the corresponding eigenvalues of the linearization of
this system at the equilibrium point (0, 0) for three different values of a.

As a increases from −1 to 1, the eigenvalues of the Jacobian matrix of
system (10) at the origin change from complex numbers with negative real
parts to complex numbers with positive real parts, but at a = 0 they are pure
imaginary. The circuit’s behavior changes as a increases, and it changes in a
qualitative way at a = 0. The phase portrait shows a spiral sink at (0, 0) for
a ≤ 0, then a spiral source for a > 0. Further, the trajectories near the source
spiral out to a closed curve that is itself a solution. Our electrical circuit
has gone from one where current and voltage die out to one that achieves a
continuing oscillation described by a periodic steady state. A change like this
in the behavior of a model at a particular value of a parameter is called a Hopf
bifurcation. Figure 7.5 shows the changes in a trajectory of system (10) due
to the bifurcation that occurs when a is increased through zero.

✓ Find the Jacobian matrix of system (10) at the origin and calculate its
eigenvalues in terms of the parameter a. Write out the linearized version of
system (10). Check your work by using ODE Architect’s equilibrium, Jaco-
bian, and eigenvalue capabilities.
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The closed solution curve in Figure 7.5 that represents a periodic steady
state is called an attracting limit cycle because nearby trajectories spiral into it☞ A limit cycle is

exclusively a nonlinear
phenomenon. Any cycle in a
linear autonomous system is
always part of a family of cycles,
none of which are limit cycles.

as time increases. As the parameter value changes in a Hopf bifurcation, you
can observe an equilibrium point that is a spiral sink changing into a source
with nearby orbits spiralling onto the limit cycle. You’ll investigate this kind
of phenomenon when you use ODE Architect to investigate the model system
in the “Saxophone” submodule of Module 7.

◆ Higher Dimensions

So far we have looked at systems of nonlinear ODEs involving only two state
variables. However it is not uncommon for a model to have a system with
more than two state variables. Fortunately our ideas extend in a natural way
to cover these situations. Analysis by linear approximation may still work
in these cases, and ODE Architect can always be used to find equilibrium
points, Jacobian matrices, and eigenvalues in any dimension. See for example
Problem 4 in Exploration 7.3.

The chapter cover figure shows trajectories of a system with three state
variables; this system describes the angular velocity of a spinning body. The
“Spinning Bodies” submodule of Module 7 and Problem 1 in Exploration 7.3
model the rotational motion of an object thrown into space; this model is
described below.

✓ How could you visualize the trajectories of a system of four equations?

◆ Spinning Bodies: Stability of Steady Rotations

Suppose that a rigid body is undergoing a steady rotation about an axis L
through its center of mass. In a plane perpendicular to L let θ be the angle
swept out by a point in the body, but not on the axis. Steady rotations about
L are characterized by the fact that θ′ = dθ/dt = constant, for all time. In☞ As we shall see, not all

axes L will support steady
rotations.

mechanics, it is useful to describe such steady rotations by a vector � parallel
to L whose magnitude |�| = dθ/dt is constant. Notice that −� in this case
also corresponds to a steady spin about L, but in the opposite direction. The
vector � is called the angular velocity, and for steady rotations we see that �
is a constant vector. The angular velocity vector � can also be defined for an
unsteady rotation of the body, but in this case �(t) is not a constant vector.

It turns out that in a uniform force field (such as the gravitational field
near the earth’s surface), the differential equations for the rotational motion of
the body about its center of mass decouple from the ODEs for the translational
motion of the center of mass. How shall we track the rotational motion of the
body? For each rigid body there is a natural triple of orthogonal axes L1, L2,
and L3 (called body axes) which, as it turns out, makes it relatively easy to
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model the rotational motion by a system of ODEs. To define the body axes we
need the inertia tensor I of the body. Given a triple of orthogonal axes through
the body’s center of mass, put an orientation on each axis and label them to
form a right-handed frame (i.e., it follow the right-hand rule). In that frame, I
is represented by a 3 × 3 positive definite matrix. Body axes are just the frame☞ A matrix A is positive

definite if it is symmetric (i.e.,
AT = A) and all of its
eigenvalues are positive.

for which the representation of I is a diagonal matrix with the positive entries
I1, I2, and I3 along the diagonal. These values I1, I2, and I3 are called the
principal moments of inertia of the body. Note that Ik is the moment of inertia
about the principal axis Lk, for k = 1, 2, 3. If a body has uniform density and
an axis L such that turning the body 180◦ about that axis brings the body into
coincidence with itself again, then that axis L is a principal axis.

Let’s say that a book has uniform density (not quite true, but nearly so).
Then the three axes of rotational symmetry through the center of mass are
the principal axes: L3, the short axis through the center of the book’s front☞ Described graphically in

Module 7. and back covers; L2, the long axis parallel to the book’s spine; and L1, the
intermediate axis which is perpendicular to L2 and L3. For a tennis racket,
the body axis L2 is obvious on geometrical grounds. The other axes L1 and
L3 are a bit more difficult to discern, but they are given in the margin sketch.

Throw a tennis racket up into the air and watch its gyrations. Wrap a

�

U

y L2

L1

L3

rubber band around a book, toss it into the air, and look at its spinning behav-
ior. Now try to get the racket or the book to spin steadily about each of three
perpendicular body axes L1, L2, and L3. Not so hard to do about two of the
axes—but nearly impossible about the third. Why is that? Let’s construct a
model for the rotation of the body and answer this question.

Let’s confine our attention to the body’s angular motion while aloft, not its☞ A complete derivation of
the model ODEs can be found in
the first of the listed references.

vertical motion. Let’s ignore air resistance. The key parameters that influence
the angular motion are the principal inertias I1, I2, I3 about the respective
body axes L1, L2, L3. Let ω1, ω2, and ω3 be the components of the vector
� along the body axes L1, L2, and L3. There is an analogue of Newton’s
Second Law applied to the body which involves the angular velocity vector
�. The components of the rotational equation of motion in the body axes
frame are given by I1ω

′
1 = (I2 − I3)ω2ω3, I2ω

′
2 = (I3 − I1)ω1ω3, I3ω

′
3 =

(I1 − I2)ω1ω2.
Dividing by the principal inertias, we have the nonlinear system

ω′
1 = I2 − I3

I1
ω2ω3

ω′
2 = I3 − I1

I2
ω1ω3

ω′
3 = I1 − I2

I3
ω1ω2

(11)

Let’s measure angles in radians and time in seconds, so that each ωi has units
of radians per second.

First, we note that for any constant α 
= 0, the equilibrium point � =☞ Pure steady rotations are
possible about any body axis. (α, 0, 0) of system (11) represents a pure steady rotation (or spinning motion)
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about the first body axis L1 with angular velocity α. The equilibrium point
(−α, 0, 0) represents steady rotation about L1 in the opposite direction. Sim-
ilar statements are true for the equilibrium points � = (0, α, 0) and (0, 0, α).

Now the kinetic energy of angular rotation is given by

K E(ω1, ω2, ω3) = 1
2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
The valueof K E stays fixed n an orbit of system (11) since

d(K E)

dt
= I1ω1ω

′
1 + I2ω2ω

′
2 + I3ω3ω

′
3

= (I2 − I3)ω1ω2ω3 + (I3 − I1)ω1ω2ω3 + (I1 − I2)ω1ω2ω3 = 0

So system (11) is conservative and K E is an integral. The ellipsoidal integral☞ A system of autonomous
ODEs is conservative if there is a
function F of the dependent
variables whose value is constant
along each orbit (i.e., trajectory),
but varies from one orbit to
another. F is said to be an
integralof motion of the system.

surface K E = C, where C is a positive constant, is called an inertial ellipsoid
for system (11). Note that any orbit of (11) that starts on one of the ellipsoids
stays on the ellipsoid, and orbits on that ellipsoid share the same value of K E.

✓ Show that the functions

K = I3 − I1

I2
ω2

1 − I2 − I3

I1
ω2

2

and

M = I1 − I2

I3
ω2

1 − I2 − I3

I1
ω2

3

are also integrals for system (11). Describe the surfaces K = const., M =
const.

Let’s put in some numbers for I1, I2, and I3 and see what happens. Set
I1 = 2, I2 = 1, I3 = 3. Then system (11) becomes

ω′
1 = −ω2ω3

ω′
2 = ω1ω3

ω′
3 = 1

3
ω1ω2

(12)

With the given values for I1, I2, I3 we have the integral

K E = 1
2

(
2ω2

1 + ω2
2 + 3ω2

3

)
(13)

The left graph in Figure 7.6, which is also the chapter cover figure, shows☞ Body axis L1 is parallel to
the ω1-axis, L2 to the ω2-axis,
and L3 to the ω3-axis in
Figure 7.6.

the inertial ellipsoid K E = 12 and twenty-four orbits on the surface. The
geometry of the orbits indicates that if the body is started spinning about an
axis very near the body axes L2 or L3, then the body continues to spin almost
steadily about those body axes. Attempting to spin the body about the inter-
mediate body axis L1 is another matter. Any attempt to spin the body about
the L1 body axis leads to strange gyrations. Note in Figure 7.6 that each of the
four trajectories that starts near the equilibrium point (

√
12, 0, 0) where the
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Figure 7.6: Twenty-four trajectories on the inertia ellipsoid K E = 12 (left);
head-on view from the ω1-axis (right) shows a saddle point on the ellipsoid.

ω1-axis pierces the ellipsoid goes back near the antipodal point (and reverses
its direction of rotation) then returns in an endlessly repeating periodic path.
This corresponds to unstable gyrations near the ω1-axis.

✓ Match up the trajectories in Figure 7.6 with actual book rotations. Put
a rubber band around a book, flip the book into the air, and check out the
rotations. Do the projected trajectories in the right graph of Figure 7.6 really
terminate, or is something else going on?

◆ The Planar Double Pendulum

The planar double pendulum is an interesting physical system with two de-☞ This is pretty advanced
material here, so feel free to skip
the text and go directly to the
“Double Pendulum Movies”. Just
click on the ODE Architect
library, open the “Physical
Models” folder and the “Double
Pendulum Animator” file, and
create chaos!

grees of freedom. It consists of two rods, of lengths l1 and l2, and two masses,
specified by m1 and m2, attached together so that the rods are constrained to
oscillate in a vertical plane. We’ll neglect effects of damping in this system.

The governing equations are most conveniently written in terms of the
angles θ1(t) and θ2(t) shown in Figure 7.7. One way to obtain the equations of
motion is by applying Newton’s Law to the motions of the masses. First we’ll
consider mass m2 and the component in the direction shown by the unit vector
u3 in Figure 7.7. Define a coordinate system centered at mass m1 and rotating
with angular velocity Ω = (dθ1/dt)k, where k is the unit vector normal to the
plane of motion. If â, v̂, and r̂ denote the acceleration, velocity, and position
of m2 with respect to the rotating coordinate system, then the acceleration a
with respect to a coordinate system at rest is known to be

a = â + dΩ
dt

× r̂ + 2Ω × v̂ + Ω × (Ω × r̂) (14)

For our configuration it follows that

r̂ = −[l1 sin(θ2 − θ1)]u3 + [l2 + l1 cos(θ2 − θ1)]u4 (15)



Id: chapter7.tex,v 1.13 1998-06-30 02:53:51-07 drichard Exp ODE Architect Workbook Page 127 on June 30, 1998 at 3:06

The Planar Double Pendulum 127

with the unit vector u4 in the direction shown in Figure 7.7. Since the only
forces acting are gravity and the tensile forces in the rods, the u3-component
of F = m2a in combination with Eqs. (14) and (15) gives

m2l2(θ2 − θ1)
′′ + m2[l2 + l1 cos(θ2 − θ1)]θ

′′
1

+ m2l1(θ
′
1)

2 sin(θ2 − θ1) = −m2g sin θ2 (16)

Similarly, the component of Newton’s Law in the direction of the unit vector
u1 is given by

m2l1θ
′′
1 + m2l2 cos(θ2 − θ1)θ

′′
2 − m2l2(θ

′
2)

2 sin(θ2 − θ1)

= −m2g sin θ1 − f2 sin(θ2 − θ1) (17)

where f2 is the magnitude of the tensile force in the rod l2. Equations (16)
and (17) will provide the system governing the motion, once the quantity f2 is
determined. An equation for f2 is found from the u1-component of Newton’s
Law applied to the mass m1:

m1l1θ
′′
1 = −m1g sin θ1 + f2 sin(θ2 − θ1) (18)

Eliminating f2 between Eqs. (17) and (18) and simplifying Eq. (16) slightly,
we obtain the governing nonlinear system of second-order ODEs for the pla-
nar double pendulum:

(m1 + m2)l1θ
′′
1 + m2l2 cos(θ2 − θ1)θ

′′
2

− m2l2(θ
′
2)

2 sin(θ2 − θ1) + (m1 + m2)g sin θ1 = 0 (19)

m2l2θ
′′
2 + m2l1 cos(θ2 − θ1)θ

′′
1

+ m2l1(θ
′
1)

2 sin(θ2 − θ1) + m2g sin θ2 = 0 (20)

θ1 m1

m2

l1

l2

θ2
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Figure 7.7: Geometry and unit vectors for the double pendulum.
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Another way to derive the equations of motion of the double pendulum
system is to use Lagrange’s equations. These are

d
dt

[
∂

∂θ′
1

(T − V )

]
− ∂

∂θ1
(T − V ) = 0 (21)

d
dt

[
∂

∂θ′
2

(T − V )

]
− ∂

∂θ2
(T − V ) = 0 (22)

where T is the kinetic energy of the system and V is its potential energy. The
respective kinetic energies of the masses m1 and m2 are

T1 = 1
2

m1l2
1(θ

′
1)

2

T2 = 1
2

m2(l1θ
′
1 sin θ1 + l2θ

′
2 sin θ2)

2 + 1
2

m2(l1θ
′
1 cos θ1 + l2θ

′
2 cos θ2)

2

The corresponding potential energies of m1 and m2 are

V1 = m1gl1(1 − cos θ1)

V2 = m2gl1(1 − cos θ1) + m2gl2(1 − cos θ2)

Then, we have T = T1 + T2 and V = V1 + V2. Inserting the expressions for
T and V into Eqs. (21) and (22), we find the equations of motion of the dou-
ble pendlum. These equations are equivalent to the ones obtained previously
using Newton’s Law. The formalism of Lagrange pays the dividend of pro-
ducing the equations with “relatively” shorter calculations.
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Exploration 7.1. Predator and Prey: Linearization and Stability

1. Let F represent the number of flies and S the number of spiders (both in

☞ Take a look as the “Spider
and Fly” submodule of Module 7.

1000s). Assume that the model for their interaction is given by:

S′ = −4S + 2SF, F ′ = 3F − 2SF (23)

where the SF-term is a measure of the interaction between the two species.

(a) Why is the SF-term negative in the first ODE and positive in the second
when (S, F) is inside the population quadrant?

(b) Show that the system has an equilibrium point at (2, 1.5).

(c) Show that the system matrix of the linearization of system (23) about
(2, 1.5) has pure imaginary eigenvalues.☞ This makes the point

(2, 1.5) a center for the
linearized system. (d) Now plot phase portraits for system (23) and for its linearization about

(2, 1.5). What do you see?

2. Suppose that an insecticide reduces the spider population at a rate proportional
to the size of the population.

(a) Modify the predator-prey model of system (23) to account for this.

(b) Model how insecticide can be made more or less effective.

(c) Use the model to predict the long-term behavior of the populations.



Id: chapter7.tex,v 1.13 1998-06-30 02:53:51-07 drichard Exp ODE Architect Workbook Page 130 on June 30, 1998 at 3:06

130 Exploration 7.1

3. In a predator-prey system that models spider-fly interaction

S′ = −4S + 2SF, F ′ = 3

(
1 − F

N

)
F − 2SF

the number N represents the maximum fly population (in 1000s). Investigate
the effect of changing the value of N. What’s the largest the spider population
can get? The fly population?

4. Suppose the spider-fly model is modified so that there are two predators, spi-
ders and lizards, competing to eat the flies. One model for just the two preda-
tor populations is

S′ = 4
(

1 − S
5

)
S − SL, L′ = 3

(
1 − L

2

)
L − SL

(a) What do the numbers 2, 3, 4, and 5 represent?

(b) What does the term SL represent? Why is it negative?

(c) What will become of the predator populations in the long run?

5. Take a look at the library file “A Predator-Prey System with Resource Limi-
tation” in the “Biological Models” folder. Compare and contrast the system
you see in that file with that given in Problem 2. Create a system where both
the predator and the prey are subject to resource limitations, and analyze the
behavior of the trajectories.
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Exploration 7.2. Bifurcations and Limit Cycles

1. Alter the model in the “Saxophone” submodule of Module 10 by adding a
parameter c:

u′ = v, v′ = −su + cv − 1
b
v3

(a) What part of the model does this affect?

(b) How do solutions behave for values of c between 0 and 2, taking s = b = 1?

(c) As c increases, what happens to the pitch and amplitude?

2. Suppose the model for a simple harmonic oscillator (a linear model),

x′ = y, y′ = −x

is modified by adding a parameter c:

x′ = cx + y, y′ = −x + cy

(a) What happens to the equilibrium point as c goes from −1 to 1?

(b) What happens to the eigenvalues of the matrix of coefficients as c changes
from −1 to 1?
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3. Suppose we further modify the system of Problem 2:

x′ = cx + y − x(x2 + y2), y′ = −x + cy − y(x2 + y2)

where −1 ≤ c ≤ 1. Analyze the behavior of the equilibrium point at (0, 0)

as c increases from −1 to 1. How does it compare with the behavior you
observed in Problem 2?

4. You can modify the system for a simple, undamped nonlinear pendulum (see
Chapter 10) to produce a torqued pendulum:

x′ = y, y′ = − sin(x) + a

Here a represents a torque applied about the axis of rotation of the pendulum☞ Use the model-based
pendulum animation in ODE
Architect and watch the
pendulum gyrate.

arm. Investigate the behavior of this torqued pendulum for the values of a
between 0 and 2 by building the model and animating the phase space as a in-
creases. Explain what kind of behavior the pendulum exhibits as a increases;
explain the behavior of any equilibrium points you see.

5. The motion of a thin, flexible steel beam, affixed to a rigid support over two
magnets, can be modeled by Duffing’s equation:

x′ = y, y′ = ax − x3

where x represents the horizontal displacement of the beam from the rest po-
sition and a is a parameter that is related to the strength of the magnets. In-☞ Sweep on the parameter a,

and then animate. To animate a
graph with multiple trajectories
corresponding to different values
of a, click on the animate icon
below the word “Tools” at the top
left of the tools screen.

vestigate the behavior of this model for −1 ≤ a ≤ 1. In particular:

(a) Find all equilibrium points and classify them as to type (e.g., center, sad-
dle point), verifying your phase plots with eigenvalue calculations (use
ODE Architect for the eigenvalue calculations). Some of your answers
will depend on a.

(b) Give a physical interpretation of your answers to Question (a).

(c) What happens to the equilibrium points as the magnets change from
weak (a ≤ 0) to strong (a > 0)?

(d) What happens if you add a linear damping term to the model? (Say,
y′ = ax − x3 − νy.)
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Exploration 7.3. Higher Dimensions

1. Spinning Bodies.
Use ODE Architect to draw several distinct trajectories on the ellipsoid of
inertia, 0.5(2ω2

1 + ω2
2 + 3ω2

3) = 6, for system (12).
Choose initial data on the ellipsoid so that the trajectories become the☞ For example, ω1 = 0,

ω2 = 3, ω3 = 1 can be taken as
an initial point and so can
ω1 = 1, ω2 = 0,
ω3 = (10/3)0.5.

“visible skeleton” of the invisible ellipsoid. What do the trajectories look like?
What kind of motion does each represent? You should be able to get a picture
that resembles the chapter cover figure and Figure 7.6. Project your 3D graphs
onto the ω1ω2-, ω2ω3-, and ω1ω3-planes, and describe what you see. Now ap-
ply the equilibrium/eigenvalue/eigenvector calculations from ODE Architect
to equilibrium points on each of the ω1, ω2, and ω3 axes. Describe the results
and their correlation with what you saw on the coordinate planes. Now go
to the Library file “A Conservative System: The Momentum Ellipsoid” in the
folder “Physical Models” and explain what you see in terms of the previous
questions in this problem.

2. Exploration 7.1 (Problem 4) gives a predator-prey model where two species,
spiders and lizards, prey on flies. Construct a system of three differential
equations that includes the prey in the model. You’ll need to represent growth
rates and interactions, and you may want to limit population sizes. Make some
reasonable assumptions about these parameters. What long-term behavior
does your model predict?

3. Take another look at the ODEs of the coupled springs model in Module 6.
Use ODE Architect for the system of four ODEs given in Experiment 1 of
that section. Make 3D plots of any three of the five variables x1, x′

1, x2, x′
2,

and t. What do the plots tell you about the corresponding motions of the
springs?
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4. Modify the coupled springs model from Module 6 (where coupled linear
springs move on a frictionless horizontal surface) by making one of the springs
hard or soft: add a term like ±x3 to the restoring force. Does this change the
long-term behavior of the system? Make and interpret graphs as in Problem 3.

5. Chaos in three dimensions
Some nonlinear 3D systems seem to behave chaotically. Orbits stay bounded
as time advances, but the slightest change in the initial data leads to an orbit
that eventually seems to be completely uncorrelated with the original orbit.
This is thought to be one feature of chaotic dynamics. Choose one of the
following three Library files located in the folder “Higher Dimensional Sys-
tems”:

• “The Scroll Circuit: Organized Chaos”

• “The Lorenz System: Chaos and Sensitivity”

• “The Roessler System: A Strange Attractor”

Change parameters until you see an example of this kind of chaos. You may
want to look at Chapter 12 for additional insight into the meaning of chaos.


