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Oscillating displacements (t) andx(t) of two coupled springs play

off against each other.

This chapter outlines some of the main facts concerning systems of first-order
linear ODEs, especially those with constant coefficients. You’ll have the opportu-
nity to work with physical problems that have two or more dependent variables.
Such problems can be modeled using systems of differential equations, which
can always be written as systems of first-order equations, as can higher-order dif-
ferential equations. The eigenvalues and eigenvectors of a matrix of coefficients
help us understand the behavior of solutions of these systems.

Linear systems; pizza and video; coupled springs; connected tanks; linearized dou-
ble pendulum; matrix; component; component plot; phase space; phase plane;
phase portrait; eigenvalue; eigenvector; saddle point; node; spiral; center; source;

sink

See also Chapter 5 for definitions of vector mathematics.
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[0 Background

Many applications involve a single independent variable (usually time) and
two or more dependent variables. Some examples of dependent variables are
e the concentrations of a chemical in organs of the body
e the voltage drops across the elements of an electrical network
the populations of several interacting species
the profits of businesses in a mall

Applications with more than one dependent variable lead naturalgyse
temsof ordinary differential equations. Such systems, as well as higher-order
ODEs, can be rewritten as systems of first-order ODEs.

[] Howtoconverta Here’s how to reduce a second-order ODE to a system of first-order ODEs
second-order ODE to a system of (see also Chapter 4). Let's look at the the second-order ODE
first-order ODEs. ,
y'=ftyy) 1)
Introduce the variables, = y andx, = y'. Then we get the first-order system
X = %o (2)
X/Z = f(t, X1, X2) (3)

ODE (2) follows from the definition ok; andx,, and ODE (3) is ODE (1)
rewritten in terms ok; andx..

O *“Check” your understanding now by reducing the second-order ODE
y” 4+ 5y + 4y = 0 to a system of first-order ODEs.

[0 Examples of Systems: Pizza and Video, Coupled Springs

Module 6 shows how to model the profitét) andy(t) of a pizza parlor and
a video store by a system that looks like this:

X =ax+by+c
y = fx+gy+h

wherea, b, ¢, f, g, andh are constants. Take another look at Screens 1.1-1.4
in Module 6 to see how ODE Architect handles these systems.

Module 6 also presents a model system of second-order ODEs for oscil-
lating springs and masses. A pair of coupled springs with spring congtants

kg m ko P andk; are connected to mass®s andm, that glide back forth on a table. As
shown in the “Coupled Springs” submodule, if damping is negligible then the

“ w“ second-order linear ODEs that model the displacements of the masses from
equilibria are

m1X/l/ = — (kg + ko) X1 + koxo
MpXs = koXg — KoXo
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[] Asystemoffistorder  Let's setmy =4, mp =1, ky = 3, andk, = 1. Then, setting} = vy, X, = vz,
ODEs isautonomousf the terms  the corresponding autonomous system of four first-order ODEs is

on the right-hand sides of the
equations do not explicitly X1=n

depend on time. 1

U& =—X1+ ZXZ

X/2 = VU2

V)= X1 — Xp
[] Trajectories of an The cover figure of this chapter shows hayandx, play off against each
autonomous system can’t other whenx; (0) = 0.4, v1(0) = 1, x2(0) = 0, andv,(0) = 0. The trajecto-

U;;el;:i;:icn{?;ir:gsiopsrgxgjd ries for this IVP are defined in the 4-dimensiomad; x,v,-space and cannot
that only one trajectory can pass INtersect themselves. However, the projections of the trajectories onto any

through a given point. planecanintersect, as we see in the cover figure.

[0 Linear Systems with Constant Coefficients

The model first-order systems of ODEs for pizza and video and for coupled
springs have the special form of linear systems with constant coefficients.
Now we shall see just what linearity means and how it allows us (sometimes)
to construct solution formulas for linear systems.

Lett (time) be the independent variable andAgtx,, ... , X, denote the
|:| Dependent variables are  dependent variables. Then a general system of first-order lo@aogeneous
also calledstate variables ODEs with constant coefficients has the form
|:| Homogeneoumeans that Xy = 811X + 812X + + -+ + @nXn
there are no freg terms, that is, X/2 = Ap1X1 + AxoXo + - - - + AonXn
terms that don't involve any. . (4)

Xn = @n1X1 + &mX2 + -+ + @nnXn

whereasy, aio, ..., ann are given constants. To find a unique solution, we
need a set of initial conditions, one for each dependent variable:

X1(to) = a1, ..., Xn(to) =an (5)
wherety is a specific time andj, . .. , ay are given constants. The system (4)
and the initial conditions (5) together constitutdmitial value problem(IVP)
|:| An equilibrium point ofan  for Xy, ... , X, as functions of. Note thatx; = - -- = x, = 0 is an equilibrium
autonomous system of ODEs is a point of system (4).
point where all the rates are zero; - Tha model on Screen 1.4 of Module 6 for the profits of the pizza and
it COFI’ESpOI’]dS to a constant . .
video stores is the system

solution.
X' = 0.06x+ 0.01y — 0.013
[] 1fn=2,we often use y = 0.04x+ 0.05y — 0.013

andy for the dependent variables. L .
with the initial conditions

x(0) =0.30, y(0)=0.20 (7)

(6)
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D A change of variables puts
the equilibrium point at the
origin.

D Vectors and matrices
appear as bold letters.

D A is called thdinear
system matrixor theJacobian
matrix.

D The vectorx(t) is called
the stateof system (10) at timé.
X1 X

Xn X,

The ODEs (6) are honhomogeneous due to the presence of the free term
—0.013 in each equation. The coordinates of an equilibrium point of a sys-
tem are values of the dependent variables for which all of the derivatives
X1, ..., X, are zero. For the system (6) the only equilibrium poirffi, 0.1).

The translationX = x — 0.2, Y = y — 0.1 transforms the system (6) into the
system

X' =0.06X + 0.01Y
Y’ = 0.04X + 0.05Y

which is homogeneous and has the same coefficients as the system (6). Ir
terms ofX andY, the initial conditions (7) become

X(0)=0.1, Y(0) =01 9)

Although we have converted a nonhomogeneous system to a homogeneou:s
system in this particular case, it isn't always possible to do so.

It is useful here to introduce matrix notation: it saves space and it ex-
presses system (4) in the form of a single equation.xLtet the vector with
componentsy, Xy, ... , X, and letA be the matrix of the coefficients, where
a;j is the element in théth row andjth column ofA. The derivative of the
vectorx, writtendx/dt, or x” is defined to be the vector with the components

(8)

dx./dt, ..., dx,/dt. Therefore we can write the system (4) in the compact
form
a1 --- Qi
xX'=Ax, where A= : : (10)
Qo1 -'- nn

In vector notation, the initial conditions (5) become
X(ty) = « (11)

wherea is the vector with components, ..., an.
O Find the linear system matrix for system (8).

A solution of the initial value problem (10) and (11) is a set of functions

X1 = X (t)
(12)
Xn = Xn(1)
that satisfy the differential equations and initial conditions. Using our new
notation, ifx(t) is the vector whose components ait), ..., Xn(t), then

X = X(t) is a solution of the corresponding vector IVP, (10) and (11). The
systemx’ = Ax is homogeneous, while a honhomogeneous system would
have the formnx’ = Ax + F, whereF is a vector function of or else a constant
vector.
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[0 Solution Formulas: Eigenvalues and Eigenvectors

To find a solution formula for system (10) let's look for an exponential solu-
tion of the form

X = vel (13)

wherea is a constant andis a constant vector to be determined. Substituting
X as given by (13) into the ODE (10), we find thaind A must satisfy the
algebraic equation

Av = AV (14)
Equation (14) can also be written in the form
(A—ilv=0 (15)

wherel is theidentity matrixand O is the zero vectorwith zero for each
component. Equation (15) has nonzero solutions if and orilyisfa root of
thenth-degree polynomial equation

The determinant of a
nlgtrix is denoted by det. det(A —Ah)=0 (16)
called thecharacteristic equatiorior the system (10). Such a root is called
[[] Thekeys to finding a aneigenvaluef the matrixA. We will denote the eigenvalues by, ... , An.
solution formula fox' =Axare  For each eigenvaluk there is a corresponding nonzero solutich, called
g]leAe'gem’a'”es and eigenvectors 5y aigenvectar The eigenvectors are not determined uniquely but only up to
' an arbitrary multiplicative constant.
For each eigenvalue-eigenvector péis, v(") there is a corresponding
vector solutiornv’ett of the ODE (10). If the eigenvalués, ... , A, are all
different, then there ane such solutions,

vDeht oyt

|:| Formula (17) is called the  In this case thgeneral solutiorof system (10) is the linear combination
general solution formula of

system (10) because every X — Clv(l)e?nlt 4t Cnv(n)e)‘”t (17)
solution has the form of (17) for
some choice of the constar(.

The other way around, every The gr_bitrary constan'@l_, ..., C,can always _be_ chosen to satisfy the initial_
choice of the constants yields a conditions (11). If the eigenvalues are not distinct, then the general solution
solution of system (10). takes on a slightly different (but similar) form. The texts listed in the refer-

ences give the formulas for this case. If some of the eigenvalues are complex,
then the solution given by formula (17) is complex-valued. However, if all
of the coefficientsa;; are real, then the complex eigenvalues and eigenvec-
tors occur in complex conjugate pairs, and it is always possible to express
the solution formula (17) in terms of real-valued functions. Look ahead to
formulas (20) and (21) for a way to accomplish this feat.
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[1 Calculating Eigenvalues and Eigenvectors

Here's how to find the eigenvalues and eigenvectors ok&2eal matrix

A2

First define theraceof A (denoted by tA) to be the suna+ d of the diagonal
entries, and thdeterminanbf A (denoted by dei) to be the numbeaid— bc.
Then the characteristic equation fris

a—A\ b
detA —Al) :det[ c d—A]

=12—(a+d)r+ad—bc
= A2 — (trA)A + detA
=0

The eigenvalues & are the roota 1 anda., of this quadratic equation. We as-
sumei; # A,. For the eigenvalug; we can find a corresponding eigenvector
v(Y by solving the vector equation

AV = v

for viY. In a similar fashion we can find an eigenveoct&? corresponding to
the eigenvalue.,.

Example: Take a look at the system

r . 0 1 X
X = AX, A_[_Z 3}, X—[XZ] (18)

Since
trA=0+3=3 and deA=0-3-1-(—-2)=2
the characteristic equation is
A — (trA)A+detA=12-31+2=0

The eigenvalues are; = 1 andi, = 2. To find an eigenvector® for A1,

let’s solve
0 1 a_ @ _ @
[ > 3} v =V =V

for v, Denoting the components ofY by « andg, we have

0 1j|a|_ B |«
-2 3||B| |-2«+38| |8
This gives two equations far andg:
B=a, —2a+38=¢



Phase Portraits 99

x1
x2

Figure 6.1: Graphs of five solutions x; (t) (left), x,(t) (right) of system (18).

The second equation is equivalent to the first, so we may as welksgt= 1,
which gives us an eigenvectotr. In a similar way for the eigenvalue, we
can find an eigenvectm® with components: = 1, g = 2. So the general
solution ofx’ = Ax in this case is

x = Cov Vet 4 Cov@et?t
_ 1 1] 2
—C1|:1]e —1—C2|:2j|e2

X1 = C€' + Coe®
Xo = Clet + ZCZEZt

whereC; andC, are arbitrary constants.

or in component form

O Find a formula for the solution of system (18)Xif(0) = 1, x»(0) = —1.
Figure 6.1 shows graphs gf(t) andx,(t) wherex; (0) =1, x2(0) =0, +0.5,
+1. Which graphs correspond ¥(0) = 1, X»(0) = —1? What happens as
t — +00? Ast > —00?

[0 Phase Portraits

We can view solutions graphically in several ways. For example, we can draw
plots of x; () vs.t, xo(t) vs.t, and so on. These plots are callemmponent
plots(see Figure 6.1). Alternatively, we can interpret equations (12) as a set
of parametric equations withas the parameter. Then each specific value of
t corresponds to a set of values far, ... , X,. We can view this set of val-

|:| Another term for phase  UeS as coordinates of a pointxqx; - - - X,-space, called thphase space(|f

space istate space n= 2 it's called thephase plang For an interval of-values, the correspond-
ing points form a curve in phase space. This curve is callpdase plota
trajectory, or anorbit.
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D Trajectories starting on
either line att = O stay on the
line.

D Eigenvalues of opposite
signs imply asaddle

Phase plots are particularly usefuhit= 2. In this case it is often worth-
while to draw several trajectories starting at different initial points on the same
set of axes. This producespaase portrait which gives us the best possible
overall view of the behavior of solutions. Whatever the valua,dhe trajec-
tories of system (10) can never intersect because system (10) is autonomous.

If A in system (10) is a % 2 matrix, then it is useful to examine and
classify the various cases that can arise. There aren’'t many cases whzn
but even so these cases give important information about higher-dimensional
linear systems, as well as nonlinear systems (see Chapter 7). We won't con-
sider here the cases where the two eigenvalues are equal, or where one or bot
of them are zero.

A direction field(or vector field for an autonomous system whee= 2 is
afield of line segments. The slope of the segment at the poink,) is x,/X; .

The trajectory througlix,, x,) is tangent to the segment. An arrowhead on the
segment shows the direction of the flow. See Figures 6.2—6.5 for examples.

Real Eigenvalues
If the eigenvalue&; anda, are real, the general solution is

x = Cv ettt 4 Cov @it (19)

whereC, andC, are arbitrary real constants.

Let’s first look at the case where, and A, have opposite signs, with
A1 > 0 andi, < 0. The term in formula (19) involving.; dominates as
t — +o00, and the term involving , dominates as— —oo. Thus ag — 400
the trajectories approach the line that goes through the origin and has the same
slope asv™Y, and agt — —oo, they approach the line that goes through the
origin and has the same slopewd$. A typical phase portrait for this case is
shown in Figure 6.2. The origin is calledsaddle pointand it isunstable
since most solutions move away from the point.

Now suppose that; and i, are both negative, with, < A; < 0. The
solution is again given by formula (19), but in this case both terms approach

~— e e o~ = o

~ e e o~ o o

Figure 6.2: Phase portrait of a sad- Figure 6.3: Phase portrait of a nodal
dle: x| = X1 — Xa, X, = —Xo. sink: x; = —3%1 + Xp, X, = —Xo.
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zero ag — +oo. However, for large positive the factore*?! is much smaller
thane*t!, so forC; # 0 the trajectories approach the origin tangent to the line
with the same slope ag®, and ifC; = 0 the trajectory lies on the line with the
same slope ag'?. For large negative the term involving', is the dominant
one and the trajectories approach asymptotes that have the same si&pe as
A typical phase portrait for this case is shown in Figure 6.3. The origin attracts
all solutions and is called aasymptotically stable nodé is also called @ink

[] Both eigenvalues negative because all nearby orbits get pulled intas +oc.

imply anodal sink If both eigenvalues are positive, the situation is similar to when both
eigenvalues are negative, but in this case the direction of motion on the tra-
jectories is reversed. For example, suppose that\Q < X,: then the trajec-
tories are unbounded &s- +oo and asymptotic to lines parallel t¢®. As
t — —oo the trajectories approach the origin either tangent to the line through
the origin with the same slope a&&” or lying on the line through the origin
with the same slope ag?. A typical phase portrait for this case looks like
Figure 6.3 but with the arrows reversed. The origin isiagtable nodelt is

|:| Both eigenvalues positive also called aourcebecause all orbits (except= 0 itself) flow out and away

imply anodal source from the origin ag increases from-oc.

O Findthe eigenvalues and eigenvectors of the systems of Figures 6.2 and 6.3
and interpret them in terms of the phase plane portraits.

Complex Eigenvalues

Now suppose that the eigenvalues are complex conjugatesa + i8 and

A2 = a — i8. The exponential form (13) of a solution remains valid, but usu-
ally it is preferable to use Euler’s formula:

e’ = cog Bt) + i sin(Bt) (20)

This allows us to write the solution in terms of real-valued functions. The
result is

x = C;e"'[acog Bt) — bsin(pt)] + Ce*'[bcog pt) + asin(pt)]  (21)

wherea andb are the real and imaginary parts of the eigenvectbrassoci-
ated withi,, andC,; andC; are constants. The trajectories are spirals about
the origin. If @ > 0, then the spirals grow in magnitude and the origin is
[[] complex eigenvalues with called aspiral sourceor anunstable spiral pointA typical phase portrait in
nonzero real parts implyspiral - this case looks like Figure 6.4. éf < 0, then the spirals approach the origin
sinkor aspiral source ast — 400, and the origin is called spiral sinkor anasymptotically stable
spiral point In both cases the spirals encircle the origin and may be directed
in either the clockwise or counterclockwise direction (but not both directions
in the same system).
Finally, consider the case = +iB, wherep is real and positive. Now
the exponential factors in solution formula (21) are absent so the trajectory
is bounded as — +o00, but it does not approach the origin. In fact, the
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D Pure imaginary
eigenvalues imply aenter

trajectories are ellipses centered on the origin (see Figure 6.5), and the origin
is called acenter It is stable but not asymptotically stable.

O Find the eigenvalues of the systems of Figures 6.4 and 6.5, and interpret
them in terms of the phase plane portraits. Why can’t you “see” the eigenvec-
tors in these portraits?

There is one other graphing technique that is often usefal=f2, ODE
Architect can draw a plot of the solution ix;x,-space. If we project this
curve onto each of the coordinate planes, we obtain the two component plots
and the phase plot (Figure 6.6).

[0 Using ODE Architect to Find Eigenvalues and Eigenvectors

D Use this Architect feature
to calculate the eigenvalues,
eigenvectors.

ODE Architect will find equilibrium points of a system and the eigenvalues
and eigenvectors of the Jacobian matrix of an autonomous system at an equi-
librium point. Here are the steps:

e Enter an autonomous system of first-order ODEs.

e Click onthe lower left Equilibrium tab; enter a guess for the coordinates
of an equilibrium point.

e The Equil. tab at the lower right will bring up a window with calculated
coordinates of an equilibrium point close to your guess.

e Double click anywhere on the boxed coordinates of an equilibrium in
the window (or click on the window’s editing icon) to see the eigenval-
ues, eigenvectors, and the Jacobian matrix.

If you complete the above steps for a system of two first-order, autonomous
ODEs, ODE Architect will insert a symbol at the equilibrium point in the
phase plane: An open square for a saddle, a solid dot for a sink, an open dot
for a source, and a plus sign for a center (Figures 6.2—6.5). The symbols can
be edited using the Equilibrium tab on the edit window.
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Figure 6.5: Phase portrait of a cen-
ter: x| = X1+ 2%, X, = —X1 — Xo.

Figure 6.4: Phase portrait of a spiral
source: X; = Xp, X, = X + 0.4%;.
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Figure 6.6: Solution curve of x; = X, X, = —10025x+ %, x1(0) =1, %(0) =1,
the two component curves, and the trajectory in the x;x,-phase plane.

O Use ODE Architectto find the eigenvalues and eigenvectors of the system
in Figure 6.2.

[0 Separatrices

A trajectoryT of a planar autonomous system iseparatrixif the long-term
behavior of trajectories on one side bfis quite different from the behavior

of those on the other side. Take a look at the feadldle separatriceis Fig-

ure 6.2, each of which is parallel to an eigenvector of the system matrix. The
two separatrices that approach the saddle poirtiasreases are thgtable
separatricesand the two that leave are thastable separatrices

[0 Parameter Movies

The eigenvalues of a 2 2 matrix A depend on the values ofArand def\,

and the behavior of the trajectories xif= Ax depends very much on the
eigenvalues. So it makes sense to see what happens to trajectories as we vary
the values of tA and deA. When we do this varying, we can make the
eigenvalues change sign, or move into the complex plane, or become equal.
As the changes occur the behavior of the trajectories has to change as well.
Take a look at the “Parameter Movies” part of Module 6 for some surprising
views of the changing phase plane portraits as we follow along a path in the
parameter plane of & and def.
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Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 6.1. Eigenvalues, Eigenvectors, and Graphs

1. Each of the phase portraits in the graphs below is associated with a planar
autonomous linear system with equilibrium point at the origin. What can you
say about the eigenvalues of the system ma&r{g.g., are they real, complex,
positive)? Sketch by hand any straight line trajectories. What can you say
about the eigenvectors?
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2. What does the phase portraitxdf= Ax look like if A is a 2x 2 matrix with
one eigenvalue zero and the other nonzero? How many equilibrium points are
there? Include portraits of specific examples.

3. Using Figure 6.6 as a guide, make your own gallery of 2D and 3D graphs
to illustrate solution curves, component curves, trajectories, and phase-plane
portraits of the systems = Ax, whereA is a 2x 2 matrix of constants. List
eigenvalues and eigenvectorsfof Include examples of the following types
of equilibrium points:

e Saddle

e Nodal sink

e Nodal source

e Spiral sink

e Spiral source

e Center

e Eigenvalues oA are equal and negative



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 6.2. Pizza and Video

Sometimes business enterprises are strongly affected by periodic (e.g., sea-
sonal) influences. We can illustrate this in the case of Diffey and Cue.

The model describing Diffey’s and Cue’s profits on Screen 1.4 in Mod-
ule6is

X =0.06x+ 0.01y — 0.013

22
y = 0.04x + 0.05y — 0.013 (22)

Let’s introduce a periodic fluctuation in the coefficient of x in the first ODE
and in the coefficient of y in the second ODE.

Sine and cosine functions are often used to model periodic phenomena.
We’ll use sin(2rt) so that the fluctuations have a period of one time unit. We
will also include a variable amplitude parameter a so that the intensity of the
fluctuations can be easily controlled. We have the modified system

1
X =0.06 (l + 5asin(2:rt)> x+0.0ly — 0.013
(23)

y = 0.04x + 0.05<1+ %asin(Znt)) y—0.013

Note that if a = 0, we recover system (22), and that as a increases the ampli-
tude of the fluctuations in the coefficients also increases.

1. Interpret the terms involving s{@rt) in the context of Diffey’s and Cue’s
businesses. Use ODE Architect to solve the system (23) subject to the initial
conditionsx(0) = 0.3, y(0) =0.2fora= 1. Use thetime interval & t < 10,
or an even longer interval. Platvs.t, yvs.t, andyvs.x. Compare the plots
with the corresponding plots for the system (22). What is the effect of the
fluctuating coefficients on the solution? Repeat with the same initial data, but
sweepinga from 0 to 5 in 11 steps. What is the effect of increasingn the
solution?
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2. Use ODE Architect to solve the system (23) subject to the initial conditions
x(0) = 0.25, y(0) = 0 fora= 3. Draw a plot ofy vs.x only. Be sure to use a
sufficiently larget-interval to make clear the ultimate behavior of the solution.
Repeat using the initial conditiong0) = 0.2, y(0) = —0.2. Explain what
you see.

3. For the two initial conditions in Problem 2 you should have found solu-
tions that behave quite differently. Consider initial points on the line joining
(0.25,0) and (0.2, —0.2). Fora = 3, estimate the coordinates of the point
where the solution changes from one type of behavior to the other.
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attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 6.3. Control of Interconnected Water Tanks

Consider two interconnected tanks containing salt water. Initially Tank 1 con-
tains 5 gal of water and 3 oz of salt while Tank 2 contains 4 gal of water and

|:| Take a look at 5 oz of salt.
Chapter 8 for a way to Water containing p; oz of salt per gal flows into Tank 1 at a rate of
diagram this

2 gal/min. The mixture in Tank 1 flows out at a rate of 6 gal/min, of which
half goes into Tank 2 and half leaves the system.

Water containing p, oz of salt per gal flows into Tank 2 at a rate of
3 gal/min. The mixture in Tank 2 flows out at a rate of 6 gal/min: 4 gal/min
goes to Tank 1, and the rest leaves the system.

“compartment” model.

1. Draw a diagram showing the tank system. Does the amount of water in each
tank remain the same during this flow process? Explaim, (f) andg,(t)
are the amounts of salt (in 0z) in the respective tanks attjsteow that they
satisfy the system of differential equations:

G =2p1— 2+
o = 3p2+ gm - %QZ
What are the initial conditions associated with this system of ODEs?

2. Suppose thap; = 1 oz/gal andp, = 1 oz/gal. Solve the IVP, plai, (t) vs.t,
and estimate the limiting valug thata (t) approaches after a long time. In
a similar way estimate the limiting valug for g»(t). Repeat for your own
initial conditions, but remember that (0) and g2(0) must be nonnegative.
How areq; andqgj; affected by changes in the initial conditions? Now use
ODE Architect to findg; andg;. [Hint: Use the Equilibrium tab.] Is the
equilibrium point a source or a sink? A node, saddle, spiral, or center?



110

Exploration 6.3

4.

The operator of this system (you) can control it by adjusting the input param-
etersp; and p,. Note thatg; andd; depend orp; and p,. Find values ofp;

and p, so thatg; = ¢5. Can you find values op; and p; so thatq; = 1.5q5?

So thatg; = 1.507?

Let c; andc} be the limiting concentrations of salt in each tank. Expiiss
andc} in terms ofq; andqj, respectively. Findo; and p,, if possible, so as
to achieve each of the following results:
(@ci=c (b) c; = 1.5¢5 (c) c; = 1.5¢;

Finally, consider all possible (nonnegative) valueppand p,. Describe
the set of limiting concentratior andc; that can be obtained by adjusting

p1 and p.



Answer questions in the space provided, or on Name/Date

attached sheets with carefully labeled graphs. A

notepad report using the Architect is OK, too. Course/Section

Exploration 6.4. Three Interconnected Tanks

|:| Take a look at
Chapter 8 for a way to
diagram this

“compartment” model.

Consider three interconnected tanks containing salt water. Initially Tanks 1
and 2 contain 10 gal of water while Tank 3 contains 15 gal. Each tank initially
contains 6 oz of salt.

Water containing 2 oz of salt per gal flows into Tank 1 at a rate of 1 gal/min.
The mixture in Tank 1 flows into Tank 2 at a rate of r gal/min. Furthermore,
the mixture in Tank 1 is discharged into the drain at a rate of 2 gal/min. Water
containing 1 oz of salt per gal flows into Tank 2 at a rate of 2 gal/min. The
mixture in Tank 2 flows into Tank 3 at a rate of r + 1 gal/min and also flows
back into Tank 1 at a rate of 1 gal/min. The mixture in Tank 3 flows into Tank 1
at a rate of r gal/min, and down the drain at a rate of 1 gal/min.

Draw a diagram that depicts the tank system. Does the amount of water in
each tank remain constant during the process? Show that the flow processis
modeled by the following system of equations, where qy(t), g2(t), and gs(t)
are the amounts of salt (in 0z) in the respectivetanks at timet:

/_Z_E _f_i +L
h=cm g ht pdT 5%
/_2_|_L _E
G=ct g™ g %

r+1 r+1

0z = l—OQ2— 15 0k}

What are the corresponding initial conditions?

Let r = 1, and use ODE Architect to plot g; vs. t, g, vs. t, and gs vs. t for
the IVP in Problem 1. Estimate the limiting value of the amount of salt in
each tank after along time. Now suppose that the flow rater is increased to
4 gal/min. What effect do you think this will have on the limiting values for
d1, 02, and gz? Check your intuition with ODE Architect. What do you think
will happen to the limiting valuesiif r is increased further? For each value of
r use ODE Architect to find the limiting valuesfor g, gz, and gs.
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3. Although the two sets of graphsin Problem 2 may look similar, they’re ac-

tualy dightly different. Calculate the eigenvalues of the coefficient matrix

[ ] UseODEArchitecttofind  whenr = 1 and whenr = 4. Thereisacertain “critical” valuer = rq between

the eigenval ues. 1 and 4 where complex eigenvalues first occur. Determiner to two decimal
places.

4. Complex eigenvalues lead to sinusoidal solutions. Explain why the oscilla-
tory behavior characteristic of the sine and cosine functionsis not apparent in
your graphs from Problem 2 for r = 4. Devise a plan that will enable you to
construct plots showing the oscillatory part of the solution for r = 4. Then
execute your plan to make sure that it is effective.
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Exploration 6.5. Small Motions of a Double Pendulum; Coupled
Springs

Another physical system with two degrees of freedom is the planar double
pendulum. This consists of two rods of length |; and |, and two masses m,
and my, all attached together so that motions are confined to a vertical plane.
Here we’ll investigate motions for which the pendulum system doesn’t move
too far from its stable equilibrium position in which both rods are hanging
vertically downward. We’ll assume the damping in this system is negligible.

A sketch of the double pendulum system is shown in the margin. A
derivation of the nonlinear equations in terms of the angles 6;(t) and 6,(t)
that govern the oscillations of the system is given in Chapter 7 (beginning on
page 126). The equations of interest here are the linearized ODE in 6, and 6,
where both of these angles are required to be small:

mp
11,60 + ———1,65+ 99, =0
I i m, 22T 9%
|29/2/+|1t9:/|f+g@2=0

For small values of 6,, 6, 6,, and ¢, these ODEs are obtained by linearizing
ODEs (19) and (20) on page 127.

1. Consider the special case where my = mp = mand |1 = I, = |, and define
g/ | = »3. Write the equations above as a system of four first-order equations.
Use ODE Architect to generate motionsfor different values of wg. Experiment
with different initial conditions. Try to visualize the motions of the pendulum
system that correspond to your solutions. Then use the model-based anima-
tion tool in ODE Architect and watch the animated double pendulums gyrate
asyour initial value problems are solved.
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Assume w3 = 10 in Problem 1. Can you find in-phase and out-of-phase os-
cillations that are analogous to those of the coupled mass-spring system? De-
termine the relationships between the initial conditions 61(0) and 62(0) that
are needed to produce these motions. Plot 6, against 61 for these motions.
Then change 0, (0) or 6,(0) to get a motion which is neither in-phase nor out-
of-phase. Overlay this graph on the first plot. Explain what you see. Use
the model-based animation feature in ODE Architect to help you “see”’ the
in-phase and out-of-phase motions, and those that are neither. Describe what
you see.

Show that the linearized equations for the double pendulum in Problem 2 are
equivalent to those for aparticular coupled mass-spring system. Find the cor-
responding values of (or constraints on) the mass-spring parameters my, my,
ki, and ky. Does this connection extend to other double-pendulum parame-
ter values besides those in Problems 1 and 27 If so, find the relationships
between the parameters of the corresponding systems. Use the model-based
animation feature in ODE Architect and watch the springs vibrate and the
double pendulum gyrate. Describe what you see.
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