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Oscillating displacementsx1(t) andx2(t) of two coupled springs play
off against each other.

Overview This chapter outlines some of the main facts concerning systems of first-order
linear ODEs, especially those with constant coefficients. You’ll have the opportu-
nity to work with physical problems that have two or more dependent variables.
Such problems can be modeled using systems of differential equations, which
can always be written as systems of first-order equations, as can higher-order dif-
ferential equations. The eigenvalues and eigenvectors of a matrix of coefficients
help us understand the behavior of solutions of these systems.

Key words Linear systems; pizza and video; coupled springs; connected tanks; linearized dou-
ble pendulum; matrix; component; component plot; phase space; phase plane;
phase portrait; eigenvalue; eigenvector; saddle point; node; spiral; center; source;
sink

See also Chapter 5 for definitions of vector mathematics.
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◆ Background

Many applications involve a single independent variable (usually time) and
two or more dependent variables. Some examples of dependent variables are:

• the concentrations of a chemical in organs of the body

• the voltage drops across the elements of an electrical network

• the populations of several interacting species

• the profits of businesses in a mall

Applications with more than one dependent variable lead naturally tosys-
temsof ordinary differential equations. Such systems, as well as higher-order
ODEs, can be rewritten as systems of first-order ODEs.

Here’s how to reduce a second-order ODE to a system of first-order ODEs☞ How to convert a
second-order ODE to a system of
first-order ODEs.

(see also Chapter 4). Let’s look at the the second-order ODE

y′′ = f (t, y, y′) (1)

Introduce the variablesx1 = y andx2 = y′. Then we get the first-order system

x′
1 = x2 (2)

x′
2 = f (t, x1, x2) (3)

ODE (2) follows from the definition ofx1 andx2, and ODE (3) is ODE (1)
rewritten in terms ofx1 andx2.

✓ “Check” your understanding now by reducing the second-order ODE
y′′ + 5y′ + 4y = 0 to a system of first-order ODEs.

◆ Examples of Systems: Pizza and Video, Coupled Springs

Module 6 shows how to model the profitsx(t) andy(t) of a pizza parlor and
a video store by a system that looks like this:

x′ = ax+ by+ c

y′ = f x+ gy+ h

wherea, b, c, f , g, andh are constants. Take another look at Screens 1.1–1.4
in Module 6 to see how ODE Architect handles these systems.

Module 6 also presents a model system of second-order ODEs for oscil-
lating springs and masses. A pair of coupled springs with spring constantsk1

m1
k2k1

m2

x2x1

� �

andk2 are connected to massesm1 andm2 that glide back forth on a table. As
shown in the “Coupled Springs” submodule, if damping is negligible then the
second-order linear ODEs that model the displacements of the masses from
equilibria are

m1x′′
1 = −(k1 + k2)x1 + k2x2

m2x′′
2 = k2x1 − k2x2
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Let’s setm1 = 4, m2 = 1, k1 = 3, andk2 = 1. Then, settingx′
1 = v1, x′

2 = v2,☞ A system of first-order
ODEs isautonomousif the terms
on the right-hand sides of the
equations do not explicitly
depend on time.

the corresponding autonomous system of four first-order ODEs is

x′
1 = v1

v′
1 = −x1 + 1

4
x2

x′
2 = v2

v′
2 = x1 − x2

The cover figure of this chapter shows howx1 andx2 play off against each☞ Trajectories of an
autonomous system can’t
intersect because to do so would
violate the uniqueness property
that only one trajectory can pass
through a given point.

other whenx1(0) = 0.4, v1(0) = 1, x2(0) = 0, andv2(0) = 0. The trajecto-
ries for this IVP are defined in the 4-dimensionalx1v1x2v2-space and cannot
intersect themselves. However, the projections of the trajectories onto any
planecan intersect, as we see in the cover figure.

◆ Linear Systems with Constant Coefficients

The model first-order systems of ODEs for pizza and video and for coupled
springs have the special form of linear systems with constant coefficients.
Now we shall see just what linearity means and how it allows us (sometimes)
to construct solution formulas for linear systems.

Let t (time) be the independent variable and letx1, x2, . . . , xn denote the
dependent variables. Then a general system of first-order linearhomogeneous☞ Dependent variables are

also calledstate variables.

☞ Homogeneousmeans that
there are no free terms, that is,
terms that don’t involve anyxi .

ODEs with constant coefficients has the form

x′
1 = a11x1 + a12x2 + · · · + a1nxn

x′
2 = a21x1 + a22x2 + · · · + a2nxn

...

x′
n = an1x1 + an2x2 + · · · + annxn

(4)

wherea11, a12, . . . , ann are given constants. To find a unique solution, we
need a set of initial conditions, one for each dependent variable:

x1(t0) = α1, . . . , xn(t0) = αn (5)

wheret0 is a specific time andα1, . . . , αn are given constants. The system (4)
and the initial conditions (5) together constitute aninitial value problem(IVP)
for x1, . . . , xn as functions oft. Note thatx1 = · · · = xn = 0 is an equilibrium
point of system (4).

☞ An equilibrium point of an
autonomous system of ODEs is a
point where all the rates are zero;
it corresponds to a constant
solution.

The model on Screen 1.4 of Module 6 for the profits of the pizza and
video stores is the system

☞ If n = 2, we often usex
andy for the dependent variables.

x′ = 0.06x+ 0.01y− 0.013

y′ = 0.04x+ 0.05y− 0.013
(6)

with the initial conditions

x(0) = 0.30, y(0) = 0.20 (7)
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The ODEs (6) are nonhomogeneous due to the presence of the free term
−0.013 in each equation. The coordinates of an equilibrium point of a sys-
tem are values of the dependent variables for which all of the derivatives
x′

1, . . . , x′
n are zero. For the system (6) the only equilibrium point is(0.2,0.1).

The translationX = x− 0.2, Y = y− 0.1 transforms the system (6) into the
system☞ A change of variables puts

the equilibrium point at the
origin. X′ = 0.06X + 0.01Y

Y′ = 0.04X + 0.05Y
(8)

which is homogeneous and has the same coefficients as the system (6). In
terms ofX andY, the initial conditions (7) become

X(0) = 0.1, Y(0) = 0.1 (9)

Although we have converted a nonhomogeneous system to a homogeneous
system in this particular case, it isn’t always possible to do so.

It is useful here to introduce matrix notation: it saves space and it ex-☞ Vectors and matrices
appear as bold letters. presses system (4) in the form of a single equation. Letx be the vector with

componentsx1, x2, . . . , xn and letA be the matrix of the coefficients, where☞ A is called thelinear
system matrix, or theJacobian
matrix.

aij is the element in theith row and jth column ofA. The derivative of the
vectorx, writtendx/dt, or x′ is defined to be the vector with the components
dx1/dt, . . . , dxn/dt. Therefore we can write the system (4) in the compact
form

☞ The vectorx(t) is called
thestateof system (10) at timet.

x =




x1

...
xn


 , x′ =




x′
1
...

x′
n




x′ = Ax, where A =




a11 · · · a1n
...

...
an1 · · · ann


 (10)

In vector notation, the initial conditions (5) become

x(t0) = � (11)

where� is the vector with componentsα1, . . . , αn.

✓ Find the linear system matrix for system (8).

A solution of the initial value problem (10) and (11) is a set of functions

x1 = x1(t)

...

xn = xn(t)

(12)

that satisfy the differential equations and initial conditions. Using our new
notation, if x(t) is the vector whose components arex1(t), . . . , xn(t), then
x = x(t) is a solution of the corresponding vector IVP, (10) and (11). The
systemx′ = Ax is homogeneous, while a nonhomogeneous system would
have the formx′ = Ax + F, whereF is a vector function oft or else a constant
vector.
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◆ Solution Formulas: Eigenvalues and Eigenvectors

To find a solution formula for system (10) let’s look for an exponential solu-
tion of the form

x = veλt (13)

whereλ is a constant andv is a constant vector to be determined. Substituting
x as given by (13) into the ODE (10), we find thatv andλ must satisfy the
algebraic equation

Av = λv (14)

Equation (14) can also be written in the form

(A − λI)v = 0 (15)

whereI is the identity matrixand 0 is the zero vectorwith zero for each
component. Equation (15) has nonzero solutions if and only ifλ is a root of
thenth-degree polynomial equation

☞ The determinant of a
matrix is denoted by det.

det(A − λI) = 0 (16)

called thecharacteristic equationfor the system (10). Such a root is called
aneigenvalueof the matrixA. We will denote the eigenvalues byλ1, . . . , λn.☞ The keys to finding a

solution formula forx′ = Ax are
the eigenvalues and eigenvectors
of A.

For each eigenvalueλi there is a corresponding nonzero solutionv(i), called
aneigenvector. The eigenvectors are not determined uniquely but only up to
an arbitrary multiplicative constant.

For each eigenvalue-eigenvector pair(λi, v(i)) there is a corresponding
vector solutionv(i)eλi t of the ODE (10). If the eigenvaluesλ1, . . . , λn are all
different, then there aren such solutions,

v(1)eλ1t, . . . , v(n)eλnt

In this case thegeneral solutionof system (10) is the linear combination☞ Formula (17) is called the
general solution formula of
system (10) because every
solution has the form of (17) for
some choice of the constantsCj .
The other way around, every
choice of the constants yields a
solution of system (10).

x = C1v(1)eλ1t + · · · + Cnv(n)eλnt (17)

The arbitrary constantsC1, . . . , Cn can always be chosen to satisfy the initial
conditions (11). If the eigenvalues are not distinct, then the general solution
takes on a slightly different (but similar) form. The texts listed in the refer-
ences give the formulas for this case. If some of the eigenvalues are complex,
then the solution given by formula (17) is complex-valued. However, if all
of the coefficientsaij are real, then the complex eigenvalues and eigenvec-
tors occur in complex conjugate pairs, and it is always possible to express
the solution formula (17) in terms of real-valued functions. Look ahead to
formulas (20) and (21) for a way to accomplish this feat.
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◆ Calculating Eigenvalues and Eigenvectors

Here’s how to find the eigenvalues and eigenvectors of a 2× 2 real matrix

A =
[

a b
c d

]

First define thetraceof A (denoted by trA) to be the suma+ d of the diagonal
entries, and thedeterminantof A (denoted by detA) to be the numberad− bc.
Then the characteristic equation forA is

det(A − λI) = det

[
a− λ b

c d− λ

]

= λ2 − (a+ d)λ + ad− bc

= λ2 − (tr A)λ + detA

= 0

The eigenvalues ofA are the rootsλ1 andλ2 of this quadratic equation. We as-
sumeλ1 �= λ2. For the eigenvalueλ1 we can find a corresponding eigenvector
v(1) by solving the vector equation

Av(1) = λ1v(1)

for v(1). In a similar fashion we can find an eigenvectorv(2) corresponding to
the eigenvalueλ2.

Example: Take a look at the system

x′ = Ax, A =
[

0 1
−2 3

]
, x =

[
x1

x2

]
(18)

Since

tr A = 0+ 3 = 3 and detA = 0 · 3− 1 · (−2) = 2

the characteristic equation is

λ2 − (trA)λ + detA = λ2 − 3λ + 2 = 0

The eigenvalues areλ1 = 1 andλ2 = 2. To find an eigenvectorv(1) for λ1,
let’s solve [

0 1
−2 3

]
v(1) = λ1v(1) = v(1)

for v(1). Denoting the components ofv(1) by α andβ, we have[
0 1

−2 3

][
α

β

]
=

[
β

−2α + 3β

]
=

[
α

β

]

This gives two equations forα andβ:

β = α, −2α + 3β = β
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Figure 6.1: Graphs of five solutions x1(t) (left), x2(t) (right) of system (18).

The second equation is equivalent to the first, so we may as well setα = β = 1,
which gives us an eigenvectorv(1). In a similar way for the eigenvalueλ2, we
can find an eigenvectorv(2) with componentsα = 1, β = 2. So the general
solution ofx′ = Ax in this case is

x = C1v(1)eλ1t + C2v(2)eλ2t

= C1

[
1
1

]
et + C2

[
1
2

]
e2t

or in component form

x1 = C1et + C2e2t

x2 = C1et + 2C2e2t

whereC1 andC2 are arbitrary constants.

✓ Find a formula for the solution of system (18) ifx1(0) = 1, x2(0) = −1.
Figure 6.1 shows graphs ofx1(t) andx2(t) wherex1(0) = 1, x2(0) = 0,±0.5,
±1. Which graphs correspond tox1(0) = 1, x2(0) = −1? What happens as
t → +∞? As t → −∞?

◆ Phase Portraits

We can view solutions graphically in several ways. For example, we can draw
plots of x1(t) vs. t, x2(t) vs. t, and so on. These plots are calledcomponent
plots (see Figure 6.1). Alternatively, we can interpret equations (12) as a set
of parametric equations witht as the parameter. Then each specific value of
t corresponds to a set of values forx1, . . . , xn. We can view this set of val-
ues as coordinates of a point inx1x2 · · · xn-space, called thephase space. (If☞ Another term for phase

space isstate space. n = 2 it’s called thephase plane.) For an interval oft-values, the correspond-
ing points form a curve in phase space. This curve is called aphase plot, a
trajectory, or anorbit.
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Phase plots are particularly useful ifn = 2. In this case it is often worth-
while to draw several trajectories starting at different initial points on the same
set of axes. This produces aphase portrait, which gives us the best possible
overall view of the behavior of solutions. Whatever the value ofn, the trajec-
tories of system (10) can never intersect because system (10) is autonomous.

If A in system (10) is a 2× 2 matrix, then it is useful to examine and
classify the various cases that can arise. There aren’t many cases whenn = 2,
but even so these cases give important information about higher-dimensional
linear systems, as well as nonlinear systems (see Chapter 7). We won’t con-
sider here the cases where the two eigenvalues are equal, or where one or both
of them are zero.

A direction field(or vector field) for an autonomous system whenn = 2 is
a field of line segments. The slope of the segment at the point(x1, x2) is x′

2/x′
1.

The trajectory through(x1, x2) is tangent to the segment. An arrowhead on the
segment shows the direction of the flow. See Figures 6.2–6.5 for examples.

Real Eigenvalues
If the eigenvaluesλ1 andλ2 are real, the general solution is

x = C1v(1)eλ1t + C2v(2)eλ2t (19)

whereC1 andC2 are arbitrary real constants.
Let’s first look at the case whereλ1 andλ2 have opposite signs, with☞ Trajectories starting on

either line att = 0 stay on the
line.

λ1 > 0 andλ2 < 0. The term in formula (19) involvingλ1 dominates as
t → +∞, and the term involvingλ2 dominates ast → −∞. Thus ast → +∞
the trajectories approach the line that goes through the origin and has the same
slope asv(1), and ast → −∞, they approach the line that goes through the
origin and has the same slope asv(2). A typical phase portrait for this case is
shown in Figure 6.2. The origin is called asaddle point, and it isunstable,☞ Eigenvalues of opposite

signs imply asaddle. since most solutions move away from the point.
Now suppose thatλ1 andλ2 are both negative, withλ2 < λ1 < 0. The

solution is again given by formula (19), but in this case both terms approach
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Figure 6.2: Phase portrait of a sad-
dle: x′

1 = x1 − x2, x′
2 = −x2.
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Figure 6.3: Phase portrait of a nodal
sink: x1 = −3x1 + x2, x′

2 = −x2.
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zero ast → +∞. However, for large positivet, the factoreλ2t is much smaller
thaneλ1t, so forC1 �= 0 the trajectories approach the origin tangent to the line
with the same slope asv(1), and ifC1 = 0 the trajectory lies on the line with the
same slope asv(2). For large negativet, the term involvingr2 is the dominant
one and the trajectories approach asymptotes that have the same slope asv(2).
A typical phase portrait for this case is shown in Figure 6.3. The origin attracts
all solutions and is called anasymptotically stable node. It is also called asink
because all nearby orbits get pulled in ast → +∞.☞ Both eigenvalues negative

imply a nodal sink. If both eigenvalues are positive, the situation is similar to when both
eigenvalues are negative, but in this case the direction of motion on the tra-
jectories is reversed. For example, suppose that 0< λ1 < λ2: then the trajec-
tories are unbounded ast → +∞ and asymptotic to lines parallel tov(2). As
t → −∞ the trajectories approach the origin either tangent to the line through
the origin with the same slope asv(1) or lying on the line through the origin
with the same slope asv(2). A typical phase portrait for this case looks like
Figure 6.3 but with the arrows reversed. The origin is anunstable node. It is
also called asourcebecause all orbits (exceptx = 0 itself) flow out and away☞ Both eigenvalues positive

imply a nodal source. from the origin ast increases from−∞.

✓ Find the eigenvalues and eigenvectors of the systems of Figures 6.2 and 6.3
and interpret them in terms of the phase plane portraits.

Complex Eigenvalues
Now suppose that the eigenvalues are complex conjugatesλ1 = α + iβ and
λ2 = α − iβ. The exponential form (13) of a solution remains valid, but usu-
ally it is preferable to use Euler’s formula:

eiβt = cos(βt) + i sin(βt) (20)

This allows us to write the solution in terms of real-valued functions. The
result is

x = C1eαt[a cos(βt) − b sin(βt)] + C2eαt[b cos(βt) + a sin(βt)] (21)

wherea andb are the real and imaginary parts of the eigenvectorv(1) associ-
ated withλ1, andC1 andC2 are constants. The trajectories are spirals about
the origin. If α > 0, then the spirals grow in magnitude and the origin is
called aspiral sourceor anunstable spiral point. A typical phase portrait in☞ Complex eigenvalues with

nonzero real parts imply aspiral
sinkor aspiral source.

this case looks like Figure 6.4. Ifα < 0, then the spirals approach the origin
ast → +∞, and the origin is called aspiral sinkor anasymptotically stable
spiral point. In both cases the spirals encircle the origin and may be directed
in either the clockwise or counterclockwise direction (but not both directions
in the same system).

Finally, consider the caseλ = ±iβ, whereβ is real and positive. Now
the exponential factors in solution formula (21) are absent so the trajectory
is bounded ast → ±∞, but it does not approach the origin. In fact, the
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trajectories are ellipses centered on the origin (see Figure 6.5), and the origin
is called acenter. It is stable, but not asymptotically stable.☞ Pure imaginary

eigenvalues imply acenter.

✓ Find the eigenvalues of the systems of Figures 6.4 and 6.5, and interpret
them in terms of the phase plane portraits. Why can’t you “see” the eigenvec-
tors in these portraits?

There is one other graphing technique that is often useful. Ifn = 2, ODE
Architect can draw a plot of the solution intx1x2-space. If we project this
curve onto each of the coordinate planes, we obtain the two component plots
and the phase plot (Figure 6.6).

◆ Using ODE Architect to Find Eigenvalues and Eigenvectors

ODE Architect will find equilibrium points of a system and the eigenvalues
and eigenvectors of the Jacobian matrix of an autonomous system at an equi-
librium point. Here are the steps:

• Enter an autonomous system of first-order ODEs.

• Click on the lower left Equilibrium tab; enter a guess for the coordinates
of an equilibrium point.

• The Equil. tab at the lower right will bring up a window with calculated
coordinates of an equilibrium point close to your guess.

• Double click anywhere on the boxed coordinates of an equilibrium in☞ Use this Architect feature
to calculate the eigenvalues,
eigenvectors.

the window (or click on the window’s editing icon) to see the eigenval-
ues, eigenvectors, and the Jacobian matrix.

If you complete the above steps for a system of two first-order, autonomous
ODEs, ODE Architect will insert a symbol at the equilibrium point in the
phase plane: An open square for a saddle, a solid dot for a sink, an open dot
for a source, and a plus sign for a center (Figures 6.2–6.5). The symbols can
be edited using the Equilibrium tab on the edit window.
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Figure 6.4: Phase portrait of a spiral
source: x′

1 = x2, x′
2 = x1 + 0.4x2.
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Figure 6.5: Phase portrait of a cen-
ter: x′

1 = x1 + 2x2, x′
2 = −x1 − x2.
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x1 x2

t

Figure 6.6: Solution curve of x′
1 = x2, x′

2 = −100.25x + x2, x1(0) = 1, x2(0) = 1,
the two component curves, and the trajectory in the x1x2-phase plane.

✓ Use ODE Architect to find the eigenvalues and eigenvectors of the system
in Figure 6.2.

◆ Separatrices

A trajectory� of a planar autonomous system is aseparatrixif the long-term
behavior of trajectories on one side of� is quite different from the behavior
of those on the other side. Take a look at the foursaddle separatricesin Fig-
ure 6.2, each of which is parallel to an eigenvector of the system matrix. The
two separatrices that approach the saddle point ast increases are thestable
separatrices, and the two that leave are theunstable separatrices.

◆ Parameter Movies

The eigenvalues of a 2× 2 matrixA depend on the values of trA and detA,
and the behavior of the trajectories ofx′ = Ax depends very much on the
eigenvalues. So it makes sense to see what happens to trajectories as we vary
the values of trA and detA. When we do this varying, we can make the
eigenvalues change sign, or move into the complex plane, or become equal.
As the changes occur the behavior of the trajectories has to change as well.
Take a look at the “Parameter Movies” part of Module 6 for some surprising
views of the changing phase plane portraits as we follow along a path in the
parameter plane of trA and detA.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 6.1. Eigenvalues, Eigenvectors, and Graphs

1. Each of the phase portraits in the graphs below is associated with a planar
autonomous linear system with equilibrium point at the origin. What can you
say about the eigenvalues of the system matrixA (e.g., are they real, complex,
positive)? Sketch by hand any straight line trajectories. What can you say
about the eigenvectors?
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2. What does the phase portrait ofx′ = Ax look like if A is a 2× 2 matrix with
one eigenvalue zero and the other nonzero? How many equilibrium points are
there? Include portraits of specific examples.

3. Using Figure 6.6 as a guide, make your own gallery of 2D and 3D graphs
to illustrate solution curves, component curves, trajectories, and phase-plane
portraits of the systemsx′ = Ax, whereA is a 2× 2 matrix of constants. List
eigenvalues and eigenvectors ofA. Include examples of the following types
of equilibrium points:

• Saddle

• Nodal sink

• Nodal source

• Spiral sink

• Spiral source

• Center

• Eigenvalues ofA are equal and negative
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Exploration 6.2. Pizza and Video

Sometimes business enterprises are strongly affected by periodic (e.g., sea-
sonal) influences. We can illustrate this in the case of Diffey and Cue.

The model describing Diffey’s and Cue’s profits on Screen 1.4 in Mod-
ule 6 is

x′ = 0.06x + 0.01y− 0.013

y′ = 0.04x + 0.05y− 0.013
(22)

Let’s introduce a periodic fluctuation in the coefficient of x in the first ODE
and in the coefficient of y in the second ODE.

Sine and cosine functions are often used to model periodic phenomena.
We’ll use sin(2πt) so that the fluctuations have a period of one time unit. We
will also include a variable amplitude parameter a so that the intensity of the
fluctuations can be easily controlled. We have the modified system

x′ = 0.06

(
1+ 1

2
asin(2πt)

)
x+ 0.01y− 0.013

y′ = 0.04x + 0.05
(

1+ 3
10

asin(2πt)

)
y− 0.013

(23)

Note that if a = 0, we recover system (22), and that as a increases the ampli-
tude of the fluctuations in the coefficients also increases.

1. Interpret the terms involving sin(2πt) in the context of Diffey’s and Cue’s
businesses. Use ODE Architect to solve the system (23) subject to the initial
conditionsx(0) = 0.3, y(0) = 0.2 for a = 1. Use the time interval 0≤ t ≤ 10,
or an even longer interval. Plotx vs. t, y vs. t, andy vs.x. Compare the plots
with the corresponding plots for the system (22). What is the effect of the
fluctuating coefficients on the solution? Repeat with the same initial data, but
sweepinga from 0 to 5 in 11 steps. What is the effect of increasinga on the
solution?
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2. Use ODE Architect to solve the system (23) subject to the initial conditions
x(0) = 0.25, y(0) = 0 for a = 3. Draw a plot ofy vs.x only. Be sure to use a
sufficiently larget-interval to make clear the ultimate behavior of the solution.
Repeat using the initial conditionsx(0) = 0.2, y(0) = −0.2. Explain what
you see.

3. For the two initial conditions in Problem 2 you should have found solu-
tions that behave quite differently. Consider initial points on the line joining
(0.25,0) and (0.2,−0.2). For a = 3, estimate the coordinates of the point
where the solution changes from one type of behavior to the other.
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Exploration 6.3. Control of Interconnected Water Tanks

Consider two interconnected tanks containing salt water. Initially Tank 1 con-
tains 5 gal of water and 3 oz of salt while Tank 2 contains 4 gal of water and
5 oz of salt.☞ Take a look at

Chapter 8 for a way to
diagram this
“compartment” model.

Water containing p1 oz of salt per gal flows into Tank 1 at a rate of
2 gal/min. The mixture in Tank 1 flows out at a rate of 6 gal/min, of which
half goes into Tank 2 and half leaves the system.

Water containing p2 oz of salt per gal flows into Tank 2 at a rate of
3 gal/min. The mixture in Tank 2 flows out at a rate of 6 gal/min: 4 gal/min
goes to Tank 1, and the rest leaves the system.

1. Draw a diagram showing the tank system. Does the amount of water in each
tank remain the same during this flow process? Explain. Ifq1(t) andq2(t)
are the amounts of salt (in oz) in the respective tanks at timet, show that they
satisfy the system of differential equations:

q′
1 = 2p1 − 6

5q1 + q2

q′
2 = 3p2 + 3

5q1 − 3
2q2

What are the initial conditions associated with this system of ODEs?

2. Suppose thatp1 = 1 oz/gal andp2 = 1 oz/gal. Solve the IVP, plotq1(t) vs. t,
and estimate the limiting valueq∗

1 thatq1(t) approaches after a long time. In
a similar way estimate the limiting valueq∗

2 for q2(t). Repeat for your own
initial conditions, but remember thatq1(0) andq2(0) must be nonnegative.
How areq∗

1 andq∗
2 affected by changes in the initial conditions? Now use

ODE Architect to findq∗
1 andq∗

2. [Hint: Use the Equilibrium tab.] Is the
equilibrium point a source or a sink? A node, saddle, spiral, or center?
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3. The operator of this system (you) can control it by adjusting the input param-
etersp1 and p2. Note thatq∗

1 andq∗
2 depend onp1 and p2. Find values ofp1

andp2 so thatq∗
1 = q∗

2. Can you find values ofp1 and p2 so thatq∗
1 = 1.5q∗

2?
So thatq∗

2 = 1.5q∗
1?

4. Let c∗
1 andc∗

2 be the limiting concentrations of salt in each tank. Expressc∗
1

andc∗
2 in terms ofq∗

1 andq∗
2, respectively. Findp1 and p2, if possible, so as

to achieve each of the following results:
(a) c∗

1 = c∗
2 (b) c∗

1 = 1.5c∗
2 (c) c∗

2 = 1.5c∗
1

Finally, consider all possible (nonnegative) values ofp1 andp2. Describe
the set of limiting concentrationsc∗

1 andc∗
2 that can be obtained by adjusting

p1 and p2.
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Exploration 6.4. Three Interconnected Tanks

Consider three interconnected tanks containing salt water. Initially Tanks 1
and 2 contain 10 gal of water while Tank 3 contains 15 gal. Each tank initially
contains 6 oz of salt.☞ Take a look at

Chapter 8 for a way to
diagram this
“compartment” model.

Water containing 2 oz of salt per gal flows into Tank 1 at a rate of 1 gal/min.
The mixture in Tank 1 flows into Tank 2 at a rate of r gal/min. Furthermore,
the mixture in Tank 1 is discharged into the drain at a rate of 2 gal/min. Water
containing 1 oz of salt per gal flows into Tank 2 at a rate of 2 gal/min. The
mixture in Tank 2 flows into Tank 3 at a rate of r + 1 gal/min and also flows
back into Tank 1 at a rate of 1 gal/min. The mixture in Tank 3 flows into Tank 1
at a rate of r gal/min, and down the drain at a rate of 1 gal/min.

1. Draw a diagram that depicts the tank system. Does the amount of water in
each tank remain constant during the process? Show that the flow process is
modeled by the following system of equations, where q1(t), q2(t), and q3(t)
are the amounts of salt (in oz) in the respective tanks at time t:

q′
1 = 2 − r + 2

10
q1 + 1

10
q2 + r

15
q3

q′
2 = 2 + r

10
q1 − r + 2

10
q2

q′
3 = r + 1

10
q2 − r + 1

15
q3

What are the corresponding initial conditions?

2. Let r = 1, and use ODE Architect to plot q1 vs. t, q2 vs. t, and q3 vs. t for
the IVP in Problem 1. Estimate the limiting value of the amount of salt in
each tank after a long time. Now suppose that the flow rate r is increased to
4 gal/min. What effect do you think this will have on the limiting values for
q1, q2, and q3? Check your intuition with ODE Architect. What do you think
will happen to the limiting values if r is increased further? For each value of
r use ODE Architect to find the limiting values for q1, q2, and q3.
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3. Although the two sets of graphs in Problem 2 may look similar, they’re ac-

☞ Use ODE Architect to find
the eigenvalues.

tually slightly different. Calculate the eigenvalues of the coefficient matrix
when r = 1 and when r = 4. There is a certain “critical” value r = r0 between
1 and 4 where complex eigenvalues first occur. Determine r0 to two decimal
places.

4. Complex eigenvalues lead to sinusoidal solutions. Explain why the oscilla-
tory behavior characteristic of the sine and cosine functions is not apparent in
your graphs from Problem 2 for r = 4. Devise a plan that will enable you to
construct plots showing the oscillatory part of the solution for r = 4. Then
execute your plan to make sure that it is effective.
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Exploration 6.5. Small Motions of a Double Pendulum; Coupled
Springs

Another physical system with two degrees of freedom is the planar double
pendulum. This consists of two rods of length l1 and l2 and two masses m1

and m2, all attached together so that motions are confined to a vertical plane.
Here we’ll investigate motions for which the pendulum system doesn’t move
too far from its stable equilibrium position in which both rods are hanging
vertically downward. We’ll assume the damping in this system is negligible.

A sketch of the double pendulum system is shown in the margin. A

θ1 m1

m2

l1

l2

θ2

derivation of the nonlinear equations in terms of the angles θ1(t) and θ2(t)
that govern the oscillations of the system is given in Chapter 7 (beginning on
page 126). The equations of interest here are the linearized ODE in θ1 and θ2

where both of these angles are required to be small:

l1θ
′′
1 + m2

m1 + m2
l2θ

′′
2 + gθ1 = 0

l2θ
′′
2 + l1θ

′′
1 + gθ2 = 0

For small values of θ1, θ′
1, θ2, and θ′

2 these ODEs are obtained by linearizing
ODEs (19) and (20) on page 127.

1. Consider the special case where m1 = m2 = m and l1 = l2 = l, and define
g/ l = ω2

0. Write the equations above as a system of four first-order equations.
Use ODE Architect to generate motions for different values of ω0. Experiment
with different initial conditions. Try to visualize the motions of the pendulum
system that correspond to your solutions. Then use the model-based anima-
tion tool in ODE Architect and watch the animated double pendulums gyrate
as your initial value problems are solved.
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2. Assume ω2
0 = 10 in Problem 1. Can you find in-phase and out-of-phase os-

cillations that are analogous to those of the coupled mass-spring system? De-
termine the relationships between the initial conditions θ1(0) and θ2(0) that
are needed to produce these motions. Plot θ2 against θ1 for these motions.
Then change θ1(0) or θ2(0) to get a motion which is neither in-phase nor out-
of-phase. Overlay this graph on the first plot. Explain what you see. Use
the model-based animation feature in ODE Architect to help you “see” the
in-phase and out-of-phase motions, and those that are neither. Describe what
you see.

3. Show that the linearized equations for the double pendulum in Problem 2 are
equivalent to those for a particular coupled mass-spring system. Find the cor-
responding values of (or constraints on) the mass-spring parameters m1, m2,
k1, and k2. Does this connection extend to other double-pendulum parame-
ter values besides those in Problems 1 and 2? If so, find the relationships
between the parameters of the corresponding systems. Use the model-based
animation feature in ODE Architect and watch the springs vibrate and the
double pendulum gyrate. Describe what you see.
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