6 First-Order Linear Systems

Oscillating displacements $x_{1}(t)$ and $x_{2}(t)$ of two coupled springs play off against each other

Overview This chapter outlines some of the main facts concerning systems of first-order linear ODEs, especially those with constant coefficients. You'll have the opportunity to work with physical problems that have two or more dependent variables. Such problems can be modeled using systems of differential equations, which can always be written as systems of first-order equations, as can higher-order differential equations. The eigenvalues and eigenvectors of a matrix of coefficients help us understand the behavior of solutions of these systems.

Key words Linear systems; pizza and video; coupled springs; connected tanks; linearized double pendulum; matrix; component; component plot; phase space; phase plane; phase portrait; eigenvalue; eigenvector; saddle point; node; spiral; center; source; sink

- Background

[島 How to convert a second-order ODE to a system of first-order ODEs.

Many applications involve a single independent variable (usually time) and two or more dependent variables. Some examples of dependent variables are:

- the concentrations of a chemical in organs of the body
- the voltage drops across the elements of an electrical network
- the populations of several interacting species
- the profits of businesses in a mall

Applications with more than one dependent variable lead naturally to systems of ordinary differential equations. Such systems, as well as higher-order ODEs, can be rewritten as systems of first-order ODEs.

Here's how to reduce a second-order ODE to a system of first-order ODEs (see also Chapter 4). Let's look at the the second-order ODE

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \tag{1}
\end{equation*}
$$

Introduce the variables $x_{1}=y$ and $x_{2}=y^{\prime}$. Then we get the first-order system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2} \tag{2}\\
& x_{2}^{\prime}=f\left(t, x_{1}, x_{2}\right) \tag{3}
\end{align*}
$$

ODE (2) follows from the definition of x_{1} and x_{2}, and ODE (3) is ODE (1) rewritten in terms of x_{1} and x_{2}.
\checkmark "Check" your understanding now by reducing the second-order ODE $y^{\prime \prime}+5 y^{\prime}+4 y=0$ to a system of first-order ODEs.

- Examples of Systems: Pizza and Video, Coupled Springs

Module 6 shows how to model the profits $x(t)$ and $y(t)$ of a pizza parlor and a video store by a system that looks like this:

$$
\begin{aligned}
& x^{\prime}=a x+b y+c \\
& y^{\prime}=f x+g y+h
\end{aligned}
$$

where a, b, c, f, g, and h are constants. Take another look at Screens 1.1-1.4 in Module 6 to see how ODE Architect handles these systems.

Module 6 also presents a model system of second-order ODEs for oscillating springs and masses. A pair of coupled springs with spring constants k_{1} and k_{2} are connected to masses m_{1} and m_{2} that glide back forth on a table. As shown in the "Coupled Springs" submodule, if damping is negligible then the second-order linear ODEs that model the displacements of the masses from equilibria are

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}=-\left(k_{1}+k_{2}\right) x_{1}+k_{2} x_{2} \\
& m_{2} x_{2}^{\prime \prime}=k_{2} x_{1}-k_{2} x_{2}
\end{aligned}
$$

【－3 A system of first－order ODEs is autonomous if the terms on the right－hand sides of the equations do not explicitly depend on time．

【－Trajectories of an autonomous system can＇t intersect because to do so would violate the uniqueness property that only one trajectory can pass through a given point．

Let＇s set $m_{1}=4, m_{2}=1, k_{1}=3$ ，and $k_{2}=1$ ．Then，setting $x_{1}^{\prime}=v_{1}, x_{2}^{\prime}=v_{2}$ ， the corresponding autonomous system of four first－order ODEs is

$$
\begin{aligned}
x_{1}^{\prime} & =v_{1} \\
v_{1}^{\prime} & =-x_{1}+\frac{1}{4} x_{2} \\
x_{2}^{\prime} & =v_{2} \\
v_{2}^{\prime} & =x_{1}-x_{2}
\end{aligned}
$$

The cover figure of this chapter shows how x_{1} and x_{2} play off against each other when $x_{1}(0)=0.4, v_{1}(0)=1, x_{2}(0)=0$ ，and $v_{2}(0)=0$ ．The trajecto－ ries for this IVP are defined in the 4－dimensional $x_{1} v_{1} x_{2} v_{2}$－space and cannot intersect themselves．However，the projections of the trajectories onto any plane can intersect，as we see in the cover figure．

－Linear Systems with Constant Coefficients

［－8 Dependent variables are also called state variables．

I－8）Homogeneous means that there are no free terms，that is， terms that don＇t involve any x_{i} ．

I－8 An equilibrium point of an autonomous system of ODEs is a point where all the rates are zero； it corresponds to a constant solution．

侙 If $n=2$ ，we often use x and y for the dependent variables．

The model first－order systems of ODEs for pizza and video and for coupled springs have the special form of linear systems with constant coefficients． Now we shall see just what linearity means and how it allows us（sometimes） to construct solution formulas for linear systems．

Let t（time）be the independent variable and let $x_{1}, x_{2}, \ldots, x_{n}$ denote the dependent variables．Then a general system of first－order linear homogeneous ODEs with constant coefficients has the form

$$
\begin{align*}
x_{1}^{\prime} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
x_{2}^{\prime} & =a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \tag{4}\\
& \vdots \\
x_{n}^{\prime} & =a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}
\end{align*}
$$

where $a_{11}, a_{12}, \ldots, a_{n n}$ are given constants．To find a unique solution，we need a set of initial conditions，one for each dependent variable：

$$
\begin{equation*}
x_{1}\left(t_{0}\right)=\alpha_{1}, \quad \ldots, \quad x_{n}\left(t_{0}\right)=\alpha_{n} \tag{5}
\end{equation*}
$$

where t_{0} is a specific time and $\alpha_{1}, \ldots, \alpha_{n}$ are given constants．The system（4） and the initial conditions（5）together constitute an initial value problem（IVP） for x_{1}, \ldots, x_{n} as functions of t ．Note that $x_{1}=\cdots=x_{n}=0$ is an equilibrium point of system（4）．

The model on Screen 1.4 of Module 6 for the profits of the pizza and video stores is the system

$$
\begin{align*}
x^{\prime} & =0.06 x+0.01 y-0.013 \\
y^{\prime} & =0.04 x+0.05 y-0.013 \tag{6}
\end{align*}
$$

with the initial conditions

$$
\begin{equation*}
x(0)=0.30, \quad y(0)=0.20 \tag{7}
\end{equation*}
$$

I-8 A change of variables puts the equilibrium point at the origin.
--8) Vectors and matrices appear as bold letters.
--8 A is called the linear system matrix, or the Jacobian matrix.

䟚 The vector $\mathbf{x}(t)$ is called the state of system (10) at time t. $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], \quad \mathbf{x}^{\prime}=\left[\begin{array}{c}x_{1}^{\prime} \\ \vdots \\ x_{n}^{\prime}\end{array}\right]$

The ODEs (6) are nonhomogeneous due to the presence of the free term -0.013 in each equation. The coordinates of an equilibrium point of a system are values of the dependent variables for which all of the derivatives $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ are zero. For the system (6) the only equilibrium point is $(0.2,0.1)$. The translation $X=x-0.2, Y=y-0.1$ transforms the system (6) into the system

$$
\begin{align*}
X^{\prime} & =0.06 X+0.01 Y \\
Y^{\prime} & =0.04 X+0.05 Y \tag{8}
\end{align*}
$$

which is homogeneous and has the same coefficients as the system (6). In terms of X and Y, the initial conditions (7) become

$$
\begin{equation*}
X(0)=0.1, \quad Y(0)=0.1 \tag{9}
\end{equation*}
$$

Although we have converted a nonhomogeneous system to a homogeneous system in this particular case, it isn't always possible to do so.

It is useful here to introduce matrix notation: it saves space and it expresses system (4) in the form of a single equation. Let \mathbf{x} be the vector with components $x_{1}, x_{2}, \ldots, x_{n}$ and let \mathbf{A} be the matrix of the coefficients, where $a_{i j}$ is the element in the i th row and j th column of \mathbf{A}. The derivative of the vector \mathbf{x}, written $d \mathbf{x} / d t$, or \mathbf{x}^{\prime} is defined to be the vector with the components $d x_{1} / d t, \ldots, d x_{n} / d t$. Therefore we can write the system (4) in the compact form

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \text { where } \quad \mathbf{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \tag{10}\\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]
$$

In vector notation, the initial conditions (5) become

$$
\begin{equation*}
\mathbf{x}\left(t_{0}\right)=\boldsymbol{\alpha} \tag{11}
\end{equation*}
$$

where $\boldsymbol{\alpha}$ is the vector with components $\alpha_{1}, \ldots, \alpha_{n}$.
\checkmark Find the linear system matrix for system (8).
A solution of the initial value problem (10) and (11) is a set of functions

$$
\begin{gather*}
x_{1}=x_{1}(t) \\
\vdots \tag{12}\\
x_{n}=x_{n}(t)
\end{gather*}
$$

that satisfy the differential equations and initial conditions. Using our new notation, if $\mathbf{x}(t)$ is the vector whose components are $x_{1}(t), \ldots, x_{n}(t)$, then $\mathbf{x}=\mathbf{x}(t)$ is a solution of the corresponding vector IVP, (10) and (11). The system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ is homogeneous, while a nonhomogeneous system would have the form $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{F}$, where \mathbf{F} is a vector function of t or else a constant vector.

- Solution Formulas: Eigenvalues and Eigenvectors

[-8) The determinant of a matrix is denoted by det.
[2] The keys to finding a solution formula for $\mathbf{x}^{\prime}=\mathbf{A x}$ are the eigenvalues and eigenvectors of \mathbf{A}.

In Formula (17) is called the general solution formula of system (10) because every solution has the form of (17) for some choice of the constants C_{j}. The other way around, every choice of the constants yields a solution of system (10).

To find a solution formula for system (10) let's look for an exponential solution of the form

$$
\begin{equation*}
\mathbf{x}=\mathbf{v} e^{\lambda t} \tag{13}
\end{equation*}
$$

where λ is a constant and \mathbf{v} is a constant vector to be determined. Substituting \mathbf{x} as given by (13) into the ODE (10), we find that \mathbf{v} and λ must satisfy the algebraic equation

$$
\begin{equation*}
\mathbf{A v}=\lambda \mathbf{v} \tag{14}
\end{equation*}
$$

Equation (14) can also be written in the form

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0} \tag{15}
\end{equation*}
$$

where \mathbf{I} is the identity matrix and $\mathbf{0}$ is the zero vector with zero for each component. Equation (15) has nonzero solutions if and only if λ is a root of the n th-degree polynomial equation

$$
\begin{equation*}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0 \tag{16}
\end{equation*}
$$

called the characteristic equation for the system (10). Such a root is called an eigenvalue of the matrix \mathbf{A}. We will denote the eigenvalues by $\lambda_{1}, \ldots, \lambda_{n}$. For each eigenvalue λ_{i} there is a corresponding nonzero solution $\mathbf{v}^{(i)}$, called an eigenvector. The eigenvectors are not determined uniquely but only up to an arbitrary multiplicative constant.

For each eigenvalue-eigenvector pair $\left(\lambda_{i}, \mathbf{v}^{(i)}\right)$ there is a corresponding vector solution $\mathbf{v}^{(i)} e^{\lambda_{i} t}$ of the ODE (10). If the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are all different, then there are n such solutions,

$$
\mathbf{v}^{(1)} e^{\lambda_{1} t}, \ldots, \mathbf{v}^{(n)} e^{\lambda_{n} t}
$$

In this case the general solution of system (10) is the linear combination

$$
\begin{equation*}
\mathbf{x}=C_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+\cdots+C_{n} \mathbf{v}^{(n)} e^{\lambda_{n} t} \tag{17}
\end{equation*}
$$

The arbitrary constants C_{1}, \ldots, C_{n} can always be chosen to satisfy the initial conditions (11). If the eigenvalues are not distinct, then the general solution takes on a slightly different (but similar) form. The texts listed in the references give the formulas for this case. If some of the eigenvalues are complex, then the solution given by formula (17) is complex-valued. However, if all of the coefficients $a_{i j}$ are real, then the complex eigenvalues and eigenvectors occur in complex conjugate pairs, and it is always possible to express the solution formula (17) in terms of real-valued functions. Look ahead to formulas (20) and (21) for a way to accomplish this feat.

- Calculating Eigenvalues and Eigenvectors

Here's how to find the eigenvalues and eigenvectors of a 2×2 real matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

First define the trace of \mathbf{A} (denoted by $\operatorname{tr} \mathbf{A}$) to be the sum $a+d$ of the diagonal entries, and the determinant of \mathbf{A} (denoted by $\operatorname{det} \mathbf{A}$) to be the number $a d-b c$. Then the characteristic equation for \mathbf{A} is

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) & =\operatorname{det}\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right] \\
& =\lambda^{2}-(a+d) \lambda+a d-b c \\
& =\lambda^{2}-(\operatorname{tr} \mathbf{A}) \lambda+\operatorname{det} \mathbf{A} \\
& =0
\end{aligned}
$$

The eigenvalues of \mathbf{A} are the roots λ_{1} and λ_{2} of this quadratic equation. We assume $\lambda_{1} \neq \lambda_{2}$. For the eigenvalue λ_{1} we can find a corresponding eigenvector $\mathbf{v}^{(1)}$ by solving the vector equation

$$
\mathbf{A} \mathbf{v}^{(1)}=\lambda_{1} \mathbf{v}^{(1)}
$$

for $\mathbf{v}^{(1)}$. In a similar fashion we can find an eigenvector $\mathbf{v}^{(2)}$ corresponding to the eigenvalue λ_{2}.
Example: Take a look at the system

$$
\mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{A}=\left[\begin{array}{cc}
0 & 1 \tag{18}\\
-2 & 3
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Since

$$
\operatorname{tr} \mathbf{A}=0+3=3 \quad \text { and } \quad \operatorname{det} \mathbf{A}=0 \cdot 3-1 \cdot(-2)=2
$$

the characteristic equation is

$$
\lambda^{2}-(\operatorname{tr} \mathbf{A}) \lambda+\operatorname{det} \mathbf{A}=\lambda^{2}-3 \lambda+2=0
$$

The eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=2$. To find an eigenvector $\mathbf{v}^{(1)}$ for λ_{1}, let's solve

$$
\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right] \mathbf{v}^{(1)}=\lambda_{1} \mathbf{v}^{(1)}=\mathbf{v}^{(1)}
$$

for $\mathbf{v}^{(1)}$. Denoting the components of $\mathbf{v}^{(1)}$ by α and β, we have

$$
\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
\beta \\
-2 \alpha+3 \beta
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

This gives two equations for α and β :

$$
\beta=\alpha, \quad-2 \alpha+3 \beta=\beta
$$

Figure 6.1: Graphs of five solutions $x_{1}(t)$ (left), $x_{2}(t)$ (right) of system (18).

The second equation is equivalent to the first, so we may as well set $\alpha=\beta=1$, which gives us an eigenvector $\mathbf{v}^{(1)}$. In a similar way for the eigenvalue λ_{2}, we can find an eigenvector $\mathbf{v}^{(2)}$ with components $\alpha=1, \beta=2$. So the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$ in this case is

$$
\begin{aligned}
\mathbf{x} & =C_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+C_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t} \\
& =C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}+C_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{2 t}
\end{aligned}
$$

or in component form

$$
\begin{aligned}
& x_{1}=C_{1} e^{t}+C_{2} e^{2 t} \\
& x_{2}=C_{1} e^{t}+2 C_{2} e^{2 t}
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.
\checkmark Find a formula for the solution of system (18) if $x_{1}(0)=1, x_{2}(0)=-1$. Figure 6.1 shows graphs of $x_{1}(t)$ and $x_{2}(t)$ where $x_{1}(0)=1, x_{2}(0)=0, \pm 0.5$, ± 1. Which graphs correspond to $x_{1}(0)=1, x_{2}(0)=-1$? What happens as $t \rightarrow+\infty$? As $t \rightarrow-\infty$?

Phase Portraits

【-2 Another term for phase space is state space.

We can view solutions graphically in several ways. For example, we can draw plots of $x_{1}(t)$ vs. $t, x_{2}(t)$ vs. t, and so on. These plots are called component plots (see Figure 6.1). Alternatively, we can interpret equations (12) as a set of parametric equations with t as the parameter. Then each specific value of t corresponds to a set of values for x_{1}, \ldots, x_{n}. We can view this set of values as coordinates of a point in $x_{1} x_{2} \cdots x_{n}$-space, called the phase space. (If $n=2$ it's called the phase plane.) For an interval of t-values, the corresponding points form a curve in phase space. This curve is called a phase plot, a trajectory, or an orbit.
[298) Trajectories starting on either line at $t=0$ stay on the line.
[-7 Eigenvalues of opposite signs imply a saddle.

Phase plots are particularly useful if $n=2$. In this case it is often worthwhile to draw several trajectories starting at different initial points on the same set of axes. This produces a phase portrait, which gives us the best possible overall view of the behavior of solutions. Whatever the value of n, the trajectories of system (10) can never intersect because system (10) is autonomous.

If \mathbf{A} in system (10) is a 2×2 matrix, then it is useful to examine and classify the various cases that can arise. There aren't many cases when $n=2$, but even so these cases give important information about higher-dimensional linear systems, as well as nonlinear systems (see Chapter 7). We won't consider here the cases where the two eigenvalues are equal, or where one or both of them are zero.

A direction field (or vector field) for an autonomous system when $n=2$ is a field of line segments. The slope of the segment at the point $\left(x_{1}, x_{2}\right)$ is $x_{2}^{\prime} / x_{1}^{\prime}$. The trajectory through $\left(x_{1}, x_{2}\right)$ is tangent to the segment. An arrowhead on the segment shows the direction of the flow. See Figures 6.2-6.5 for examples.

Real Eigenvalues

If the eigenvalues λ_{1} and λ_{2} are real, the general solution is

$$
\begin{equation*}
\mathbf{x}=C_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+C_{2} \mathbf{v}^{(2)} e^{\lambda_{2} t} \tag{19}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary real constants.
Let's first look at the case where λ_{1} and λ_{2} have opposite signs, with $\lambda_{1}>0$ and $\lambda_{2}<0$. The term in formula (19) involving λ_{1} dominates as $t \rightarrow+\infty$, and the term involving λ_{2} dominates as $t \rightarrow-\infty$. Thus as $t \rightarrow+\infty$ the trajectories approach the line that goes through the origin and has the same slope as $\mathbf{v}^{(1)}$, and as $t \rightarrow-\infty$, they approach the line that goes through the origin and has the same slope as $\mathbf{v}^{(2)}$. A typical phase portrait for this case is shown in Figure 6.2. The origin is called a saddle point, and it is unstable, since most solutions move away from the point.

Now suppose that λ_{1} and λ_{2} are both negative, with $\lambda_{2}<\lambda_{1}<0$. The solution is again given by formula (19), but in this case both terms approach

Figure 6.2: Phase portrait of a saddle: $x_{1}^{\prime}=x_{1}-x_{2}, x_{2}^{\prime}=-x_{2}$.

Figure 6.3: Phase portrait of a nodal sink: $x_{1}=-3 x_{1}+x_{2}, x_{2}^{\prime}=-x_{2}$.
[-7) Both eigenvalues negative imply a nodal sink.
[1-2 Both eigenvalues positive imply a nodal source.
[-3 Complex eigenvalues with nonzero real parts imply a spiral sink or a spiral source.
zero as $t \rightarrow+\infty$. However, for large positive t, the factor $e^{\lambda_{2} t}$ is much smaller than $e^{\lambda_{1} t}$, so for $C_{1} \neq 0$ the trajectories approach the origin tangent to the line with the same slope as $\mathbf{v}^{(1)}$, and if $C_{1}=0$ the trajectory lies on the line with the same slope as $\mathbf{v}^{(2)}$. For large negative t, the term involving r_{2} is the dominant one and the trajectories approach asymptotes that have the same slope as $\mathbf{v}^{(2)}$. A typical phase portrait for this case is shown in Figure 6.3. The origin attracts all solutions and is called an asymptotically stable node. It is also called a sink because all nearby orbits get pulled in as $t \rightarrow+\infty$.

If both eigenvalues are positive, the situation is similar to when both eigenvalues are negative, but in this case the direction of motion on the trajectories is reversed. For example, suppose that $0<\lambda_{1}<\lambda_{2}$: then the trajectories are unbounded as $t \rightarrow+\infty$ and asymptotic to lines parallel to $\mathbf{v}^{(2)}$. As $t \rightarrow-\infty$ the trajectories approach the origin either tangent to the line through the origin with the same slope as $\mathbf{v}^{(1)}$ or lying on the line through the origin with the same slope as $\mathbf{v}^{(2)}$. A typical phase portrait for this case looks like Figure 6.3 but with the arrows reversed. The origin is an unstable node. It is also called a source because all orbits (except $\mathbf{x}=\mathbf{0}$ itself) flow out and away from the origin as t increases from $-\infty$.
\checkmark Find the eigenvalues and eigenvectors of the systems of Figures 6.2 and 6.3 and interpret them in terms of the phase plane portraits.

Complex Eigenvalues

Now suppose that the eigenvalues are complex conjugates $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$. The exponential form (13) of a solution remains valid, but usually it is preferable to use Euler's formula:

$$
\begin{equation*}
e^{i \beta t}=\cos (\beta t)+i \sin (\beta t) \tag{20}
\end{equation*}
$$

This allows us to write the solution in terms of real-valued functions. The result is

$$
\begin{equation*}
\mathbf{x}=C_{1} e^{\alpha t}[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)]+C_{2} e^{\alpha t}[\mathbf{b} \cos (\beta t)+\mathbf{a} \sin (\beta t)] \tag{21}
\end{equation*}
$$

where \mathbf{a} and \mathbf{b} are the real and imaginary parts of the eigenvector $\mathbf{v}^{(1)}$ associated with λ_{1}, and C_{1} and C_{2} are constants. The trajectories are spirals about the origin. If $\alpha>0$, then the spirals grow in magnitude and the origin is called a spiral source or an unstable spiral point. A typical phase portrait in this case looks like Figure 6.4. If $\alpha<0$, then the spirals approach the origin as $t \rightarrow+\infty$, and the origin is called a spiral sink or an asymptotically stable spiral point. In both cases the spirals encircle the origin and may be directed in either the clockwise or counterclockwise direction (but not both directions in the same system).

Finally, consider the case $\lambda= \pm i \beta$, where β is real and positive. Now the exponential factors in solution formula (21) are absent so the trajectory is bounded as $t \rightarrow \pm \infty$, but it does not approach the origin. In fact, the
［－⿰亻弋⿱一𧰨丶万⿱⿰㇒一乂⿹\zh26灬 P Pure imaginary eigenvalues imply a center．
trajectories are ellipses centered on the origin（see Figure 6．5），and the origin is called a center．It is stable，but not asymptotically stable．
\checkmark Find the eigenvalues of the systems of Figures 6.4 and 6．5，and interpret them in terms of the phase plane portraits．Why can＇t you＂see＂the eigenvec－ tors in these portraits？

There is one other graphing technique that is often useful．If $n=2$ ，ODE Architect can draw a plot of the solution in $t x_{1} x_{2}$－space．If we project this curve onto each of the coordinate planes，we obtain the two component plots and the phase plot（Figure 6．6）．

－Using ODE Architect to Find Eigenvalues and Eigenvectors

［－2）Use this Architect feature to calculate the eigenvalues， eigenvectors．

ODE Architect will find equilibrium points of a system and the eigenvalues and eigenvectors of the Jacobian matrix of an autonomous system at an equi－ librium point．Here are the steps：
－Enter an autonomous system of first－order ODEs．
－Click on the lower left Equilibrium tab；enter a guess for the coordinates of an equilibrium point．
－The Equil．tab at the lower right will bring up a window with calculated coordinates of an equilibrium point close to your guess．
－Double click anywhere on the boxed coordinates of an equilibrium in the window（or click on the window＇s editing icon）to see the eigenval－ ues，eigenvectors，and the Jacobian matrix．
If you complete the above steps for a system of two first－order，autonomous ODEs，ODE Architect will insert a symbol at the equilibrium point in the phase plane：An open square for a saddle，a solid dot for a sink，an open dot for a source，and a plus sign for a center（Figures 6．2－6．5）．The symbols can be edited using the Equilibrium tab on the edit window．

Figure 6．4：Phase portrait of a spiral source：$x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{1}+0.4 x_{2}$ ．

Figure 6．5：Phase portrait of a cen－ ter：$x_{1}^{\prime}=x_{1}+2 x_{2}, x_{2}^{\prime}=-x_{1}-x_{2}$ ．

Figure 6.6: Solution curve of $x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=-100.25 x+x_{2}, x_{1}(0)=1, x_{2}(0)=1$, the two component curves, and the trajectory in the $x_{1} x_{2}$-phase plane.
\checkmark Use ODE Architect to find the eigenvalues and eigenvectors of the system in Figure 6.2.

Separatrices

A trajectory Γ of a planar autonomous system is a separatrix if the long-term behavior of trajectories on one side of Γ is quite different from the behavior of those on the other side. Take a look at the four saddle separatrices in Figure 6.2, each of which is parallel to an eigenvector of the system matrix. The two separatrices that approach the saddle point as t increases are the stable separatrices, and the two that leave are the unstable separatrices.

Parameter Movies

The eigenvalues of a 2×2 matrix \mathbf{A} depend on the values of $\operatorname{tr} \mathbf{A}$ and $\operatorname{det} \mathbf{A}$, and the behavior of the trajectories of $\mathbf{x}^{\prime}=\mathbf{A x}$ depends very much on the eigenvalues. So it makes sense to see what happens to trajectories as we vary the values of $\operatorname{tr} \mathbf{A}$ and $\operatorname{det} \mathbf{A}$. When we do this varying, we can make the eigenvalues change sign, or move into the complex plane, or become equal. As the changes occur the behavior of the trajectories has to change as well. Take a look at the "Parameter Movies" part of Module 6 for some surprising views of the changing phase plane portraits as we follow along a path in the parameter plane of $\operatorname{tr} \mathbf{A}$ and $\operatorname{det} \mathbf{A}$.

References

Borrelli, R.L., and Coleman, C.S., Differential Equations: A Modeling Perspective (1998: John Wiley \& Sons, Inc.)

Boyce, W.E., and DiPrima, R.C., Elementary Differential Equations and Boundary Value Problems, 6th ed., (1997: John Wiley \& Sons, Inc.)
\qquad attached sheets with carefully labeled graphs. A notepad report using the Architect is OK, too.

Course/Section

Exploration 6.1. Eigenvalues, Eigenvectors, and Graphs

1. Each of the phase portraits in the graphs below is associated with a planar autonomous linear system with equilibrium point at the origin. What can you say about the eigenvalues of the system matrix \mathbf{A} (e.g., are they real, complex, positive)? Sketch by hand any straight line trajectories. What can you say about the eigenvectors?

2. What does the phase portrait of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ look like if \mathbf{A} is a 2×2 matrix with one eigenvalue zero and the other nonzero? How many equilibrium points are there? Include portraits of specific examples.
3. Using Figure 6.6 as a guide, make your own gallery of 2D and 3D graphs to illustrate solution curves, component curves, trajectories, and phase-plane portraits of the systems $\mathbf{x}^{\prime}=\mathbf{A x}$, where \mathbf{A} is a 2×2 matrix of constants. List eigenvalues and eigenvectors of \mathbf{A}. Include examples of the following types of equilibrium points:

- Saddle
- Nodal sink
- Nodal source
- Spiral sink
- Spiral source
- Center
- Eigenvalues of \mathbf{A} are equal and negative

Exploration 6.2. Pizza and Video

Sometimes business enterprises are strongly affected by periodic (e.g., seasonal) influences. We can illustrate this in the case of Diffey and Cue.

The model describing Diffey's and Cue's profits on Screen 1.4 in Module 6 is

$$
\begin{align*}
x^{\prime} & =0.06 x+0.01 y-0.013 \tag{22}\\
y^{\prime} & =0.04 x+0.05 y-0.013
\end{align*}
$$

Let's introduce a periodic fluctuation in the coefficient of x in the first ODE and in the coefficient of y in the second ODE.

Sine and cosine functions are often used to model periodic phenomena. We'll use $\sin (2 \pi t)$ so that the fluctuations have a period of one time unit. We will also include a variable amplitude parameter a so that the intensity of the fluctuations can be easily controlled. We have the modified system

$$
\begin{align*}
& x^{\prime}=0.06\left(1+\frac{1}{2} a \sin (2 \pi t)\right) x+0.01 y-0.013 \tag{23}\\
& y^{\prime}=0.04 x+0.05\left(1+\frac{3}{10} a \sin (2 \pi t)\right) y-0.013
\end{align*}
$$

Note that if $a=0$, we recover system (22), and that as a increases the amplitude of the fluctuations in the coefficients also increases.

1. Interpret the terms involving $\sin (2 \pi t)$ in the context of Diffey's and Cue's businesses. Use ODE Architect to solve the system (23) subject to the initial conditions $x(0)=0.3, y(0)=0.2$ for $a=1$. Use the time interval $0 \leq t \leq 10$, or an even longer interval. Plot x vs. t, y vs. t, and y vs. x. Compare the plots with the corresponding plots for the system (22). What is the effect of the fluctuating coefficients on the solution? Repeat with the same initial data, but sweeping a from 0 to 5 in 11 steps. What is the effect of increasing a on the solution?
2. Use ODE Architect to solve the system (23) subject to the initial conditions $x(0)=0.25, y(0)=0$ for $a=3$. Draw a plot of y vs. x only. Be sure to use a sufficiently large t-interval to make clear the ultimate behavior of the solution. Repeat using the initial conditions $x(0)=0.2, y(0)=-0.2$. Explain what you see.
3. For the two initial conditions in Problem 2 you should have found solutions that behave quite differently. Consider initial points on the line joining $(0.25,0)$ and $(0.2,-0.2)$. For $a=3$, estimate the coordinates of the point where the solution changes from one type of behavior to the other.

Exploration 6.3. Control of Interconnected Water Tanks

[-f) Take a look at Chapter 8 for a way to diagram this "compartment" model.

Consider two interconnected tanks containing salt water. Initially Tank 1 contains 5 gal of water and 3 oz of salt while Tank 2 contains 4 gal of water and 5 oz of salt.

Water containing p_{1} oz of salt per gal flows into Tank 1 at a rate of $2 \mathrm{gal} / \mathrm{min}$. The mixture in Tank 1 flows out at a rate of $6 \mathrm{gal} / \mathrm{min}$, of which half goes into Tank 2 and half leaves the system.

Water containing p_{2} oz of salt per gal flows into Tank 2 at a rate of $3 \mathrm{gal} / \mathrm{min}$. The mixture in Tank 2 flows out at a rate of $6 \mathrm{gal} / \mathrm{min}: 4 \mathrm{gal} / \mathrm{min}$ goes to Tank 1, and the rest leaves the system.

1. Draw a diagram showing the tank system. Does the amount of water in each tank remain the same during this flow process? Explain. If $q_{1}(t)$ and $q_{2}(t)$ are the amounts of salt (in oz) in the respective tanks at time t, show that they satisfy the system of differential equations:

$$
\begin{aligned}
& q_{1}^{\prime}=2 p_{1}-\frac{6}{5} q_{1}+q_{2} \\
& q_{2}^{\prime}=3 p_{2}+\frac{3}{5} q_{1}-\frac{3}{2} q_{2}
\end{aligned}
$$

What are the initial conditions associated with this system of ODEs?
2. Suppose that $p_{1}=1 \mathrm{oz} / \mathrm{gal}$ and $p_{2}=1 \mathrm{oz} / \mathrm{gal}$. Solve the IVP, plot $q_{1}(t)$ vs. t, and estimate the limiting value q_{1}^{*} that $q_{1}(t)$ approaches after a long time. In a similar way estimate the limiting value q_{2}^{*} for $q_{2}(t)$. Repeat for your own initial conditions, but remember that $q_{1}(0)$ and $q_{2}(0)$ must be nonnegative. How are q_{1}^{*} and q_{2}^{*} affected by changes in the initial conditions? Now use ODE Architect to find q_{1}^{*} and q_{2}^{*}. [Hint: Use the Equilibrium tab.] Is the equilibrium point a source or a sink? A node, saddle, spiral, or center?
3. The operator of this system (you) can control it by adjusting the input parameters p_{1} and p_{2}. Note that q_{1}^{*} and q_{2}^{*} depend on p_{1} and p_{2}. Find values of p_{1} and p_{2} so that $q_{1}^{*}=q_{2}^{*}$. Can you find values of p_{1} and p_{2} so that $q_{1}^{*}=1.5 q_{2}^{*}$? So that $q_{2}^{*}=1.5 q_{1}^{*}$?
4. Let c_{1}^{*} and c_{2}^{*} be the limiting concentrations of salt in each tank. Express c_{1}^{*} and c_{2}^{*} in terms of q_{1}^{*} and q_{2}^{*}, respectively. Find p_{1} and p_{2}, if possible, so as to achieve each of the following results:
(a) $c_{1}^{*}=c_{2}^{*}$
(b) $c_{1}^{*}=1.5 c_{2}^{*}$
(c) $c_{2}^{*}=1.5 c_{1}^{*}$

Finally, consider all possible (nonnegative) values of p_{1} and p_{2}. Describe the set of limiting concentrations c_{1}^{*} and c_{2}^{*} that can be obtained by adjusting p_{1} and p_{2}.

Exploration 6.4. Three Interconnected Tanks

[-f) Take a look at Chapter 8 for a way to diagram this "compartment" model.

Consider three interconnected tanks containing salt water. Initially Tanks 1 and 2 contain 10 gal of water while Tank 3 contains 15 gal. Each tank initially contains 6 oz of salt.

Water containing 2 oz of salt per gal flows into Tank 1 at a rate of $1 \mathrm{gal} / \mathrm{min}$. The mixture in Tank 1 flows into Tank 2 at a rate of r gal/min. Furthermore, the mixture in Tank 1 is discharged into the drain at a rate of $2 \mathrm{gal} / \mathrm{min}$. Water containing 1 oz of salt per gal flows into Tank 2 at a rate of $2 \mathrm{gal} / \mathrm{min}$. The mixture in Tank 2 flows into Tank 3 at a rate of $r+1 \mathrm{gal} / \mathrm{min}$ and also flows back into Tank 1 at a rate of $1 \mathrm{gal} / \mathrm{min}$. The mixture in Tank 3 flows into Tank 1 at a rate of $r \mathrm{gal} / \mathrm{min}$, and down the drain at a rate of $1 \mathrm{gal} / \mathrm{min}$.

1. Draw a diagram that depicts the tank system. Does the amount of water in each tank remain constant during the process? Show that the flow process is modeled by the following system of equations, where $q_{1}(t), q_{2}(t)$, and $q_{3}(t)$ are the amounts of salt (in oz) in the respective tanks at time t :

$$
\begin{aligned}
q_{1}^{\prime} & =2-\frac{r+2}{10} q_{1}+\frac{1}{10} q_{2}+\frac{r}{15} q_{3} \\
q_{2}^{\prime} & =2+\frac{r}{10} q_{1}-\frac{r+2}{10} q_{2} \\
q_{3}^{\prime} & =\frac{r+1}{10} q_{2}-\frac{r+1}{15} q_{3}
\end{aligned}
$$

What are the corresponding initial conditions?
2. Let $r=1$, and use ODE Architect to plot q_{1} vs. t, q_{2} vs. t, and q_{3} vs. t for the IVP in Problem 1. Estimate the limiting value of the amount of salt in each tank after a long time. Now suppose that the flow rate r is increased to $4 \mathrm{gal} / \mathrm{min}$. What effect do you think this will have on the limiting values for q_{1}, q_{2}, and q_{3} ? Check your intuition with ODE Architect. What do you think will happen to the limiting values if r is increased further? For each value of r use ODE Architect to find the limiting values for q_{1}, q_{2}, and q_{3}.
3. Although the two sets of graphs in Problem 2 may look similar, they're actually slightly different. Calculate the eigenvalues of the coefficient matrix
[2] Use ODE Architect to find the eigenvalues.
when $r=1$ and when $r=4$. There is a certain "critical" value $r=r_{0}$ between 1 and 4 where complex eigenvalues first occur. Determine r_{0} to two decimal places.
4. Complex eigenvalues lead to sinusoidal solutions. Explain why the oscillatory behavior characteristic of the sine and cosine functions is not apparent in your graphs from Problem 2 for $r=4$. Devise a plan that will enable you to construct plots showing the oscillatory part of the solution for $r=4$. Then execute your plan to make sure that it is effective.

Exploration 6.5. Small Motions of a Double Pendulum; Coupled Springs

Another physical system with two degrees of freedom is the planar double pendulum. This consists of two rods of length l_{1} and l_{2} and two masses m_{1} and m_{2}, all attached together so that motions are confined to a vertical plane. Here we'll investigate motions for which the pendulum system doesn't move too far from its stable equilibrium position in which both rods are hanging vertically downward. We'll assume the damping in this system is negligible.

A sketch of the double pendulum system is shown in the margin. A derivation of the nonlinear equations in terms of the angles $\theta_{1}(t)$ and $\theta_{2}(t)$ that govern the oscillations of the system is given in Chapter 7 (beginning on page 126). The equations of interest here are the linearized ODE in θ_{1} and θ_{2} where both of these angles are required to be small:

$$
\begin{gathered}
l_{1} \theta_{1}^{\prime \prime}+\frac{m_{2}}{m_{1}+m_{2}} l_{2} \theta_{2}^{\prime \prime}+g \theta_{1}=0 \\
l_{2} \theta_{2}^{\prime \prime}+l_{1} \theta_{1}^{\prime \prime}+g \theta_{2}=0
\end{gathered}
$$

For small values of $\theta_{1}, \theta_{1}^{\prime}, \theta_{2}$, and θ_{2}^{\prime} these ODEs are obtained by linearizing ODEs (19) and (20) on page 127.

1. Consider the special case where $m_{1}=m_{2}=m$ and $l_{1}=l_{2}=l$, and define $g / l=\omega_{0}^{2}$. Write the equations above as a system of four first-order equations. Use ODE Architect to generate motions for different values of ω_{0}. Experiment with different initial conditions. Try to visualize the motions of the pendulum system that correspond to your solutions. Then use the model-based animation tool in ODE Architect and watch the animated double pendulums gyrate as your initial value problems are solved.
2. Assume $\omega_{0}^{2}=10$ in Problem 1. Can you find in-phase and out-of-phase oscillations that are analogous to those of the coupled mass-spring system? Determine the relationships between the initial conditions $\theta_{1}(0)$ and $\theta_{2}(0)$ that are needed to produce these motions. Plot θ_{2} against θ_{1} for these motions. Then change $\theta_{1}(0)$ or $\theta_{2}(0)$ to get a motion which is neither in-phase nor out-of-phase. Overlay this graph on the first plot. Explain what you see. Use the model-based animation feature in ODE Architect to help you "see" the in-phase and out-of-phase motions, and those that are neither. Describe what you see.
3. Show that the linearized equations for the double pendulum in Problem 2 are equivalent to those for a particular coupled mass-spring system. Find the corresponding values of (or constraints on) the mass-spring parameters m_{1}, m_{2}, k_{1}, and k_{2}. Does this connection extend to other double-pendulum parameter values besides those in Problems 1 and 2? If so, find the relationships between the parameters of the corresponding systems. Use the model-based animation feature in ODE Architect and watch the springs vibrate and the double pendulum gyrate. Describe what you see.
