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The phenomenon of besats.

Second-order linear differential equations, especially those with constant coeffi-
cients, have a host of important applications. In this chapter we explore some
phenomena involving mechanical and electrical oscillations. The first submodule
deals with some basic features common to oscillations of all sorts. The second
submodule applies some of these results to seismographs, which are instruments
used for recording earthquake data.

Oscillation; period; frequency; amplitude; phase; simple harmonic motion; viscous
damping; underdamping; overdamping; critical damping; transient; steady-state
solution; forced oscillation; seismograph; Kirchhoff’s laws

Chapter 5 for more on vectors and damping, Chapters 6 and 10 for more on oscil-
lations, and Chapter 12 for more on forced oscillations.
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Chapter 4

[0 Second-Order ODEs and the Architect

D ODE Architect only
accepts ODEsin normal form;
for example, write 2X + x =6 as
X = x/2+ 3 with the X term
alone on the left.

ODE Architect will accept only first-order ODEs, so how can we use it to
solve a second-order ODE? There is a neat trick that does the job, and an
example will show how. Suppose we want to use ODE Architect to study the
behavior of theinitial value problem (or IVP):

u’+3U +10u=5cos(2t), u@ =1 U (@O =0 (D

Let'swritev = U, then
/ d d / 4
v —a(v)—a(u)—u
but
U’ = —10u — 3u’ + 5cos(2t)

so VP (1) becomes
uU=v, u0=1
v =—10u—3v+5cos(2t), v(0)=0

ODE Architect won't accept 1VP (1), but it will accept the equivalent IVP (2).
The components u and v give the solution of 1VP (1) and its first derivative
U = v. Therefore, if we use ODE Architect to solve and plot the component
curve u(t) of system (2), we are simultaneously plotting the solution u(t) of
IVP ().

@

O “Check” your understanding by converting the IVP
22U —2u 4+3u=—sin4t), u0=-1, U0 =2

to an equivaent IV P involving a system of two normalized first-order ODEs.

[0 Undamped Oscillations

Second-order differential equations arise naturally in physical situations; for
example, the motion of an object is described by Newton's second law, F =
ma. Here, a isthe acceleration, which is the second derivative of the object’s
position. Many of these differential equations lead to oscillations or vibra-
tions. Many oscillating systems can be modeled by a system consisting of a
mass attached to a spring where the motion takes place in a horizontal direc-
tionon atable. Thissimplifiesthe derivation of the equation of motion, but the
same eguation also describes the up-and-down motion of a mass suspended
by avertical spring.

Let's assume an ideal situation: thereis no friction between the mass and
the table, thereisno air resistance, and thereis no dissipation of energy in the
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[[] Thisisalsocalled Hooke's
law restoring force.

|:| See the first two references
for derivations of formula (5).

|:| Theterm “circular
frequency” is only used with
trigonometric functions.

|:| Thismotion is called
simple harmonic motion. See
Screeen 1.3 of Module 4 for

graphs.

spring or anywhere else in the system. The differential equation describing
the motion of the massis
d?u
mW = —ku (©)]
where u(t) isthe position of the mass mrelativeto its equilibrium and k isthe
spring constant. The natural tendency of the spring to return to its equilibrium
position is represented by the restoring force —ku. Two initial conditions,

u(0) = uo, u'(0) =vo (4)

where ug and vg are theinitia position and velocity of the mass, respectively,
determine the position of the mass uniquely. ODE (3) together with the ini-
tial conditions (4) constitute a well-formulated initial value problem whose
solution predicts the position of the mass at any future time.

The general solution of ODE (3) is

u(t) = Cycos(wot) + Cysin(wot) 5)

where C; and C; are arbitrary constants and w3 = k/m. Applying the initial
conditions (4), wefind that C; = up and C, = vg/wo. Thusthe solution of the
IVP(3), (4) is

u(t) = ugcos(wot) + (vo/wg) Sin(wot)

(6)

The corresponding motion of the massis periodic, which meansthat it repeats
itself after the passage of atimeinterval T caled the period. If we measure
time in seconds, then the quantity wg is the natural (circular) frequency in
radiang/sec, and T is given by

T =2n/wo (7

The reciprocal of T, or wo/27, is the frequency of the oscillations measured
in cycles per second, or hertz. Notice that since wg = +/k/m, the frequency
and the period depend only on the mass and the spring constant and not on the
initial data ug and vg.

By using atrigonometric identity, the solution (6) can be rewritten in the
amplitude-phase form as a single cosine term:

u(t) = Acos(wot — 98) 8
where A and § are expressed in terms of ug and vo/wg by the equations
A= JU+ (vo/wo)?, tans= —2 9)
Uowo

The quantity A determines the magnitude or amplitude of the oscillation (8),
and §, called the phase (or phase shift), measures the time trandation from a
standard cosine curve.

O Show that (8) isequivalent to (6) when A and § are defined by (9).
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[0 The Effect of Damping

D The viscous damping
forceis —cdu/dt.

[] Check that this equation
gives a solution of ODE (10).

D Solutions of an
underdamped ODE oscillate with
circular frequency w and an
exponentially decaying
amplitude.

Equation (8) predictsthat the periodic oscillation will continueindefinitely. A
more realistic model of an oscillating spring must include damping. A smple,
useful model resultsif we represent the damping force by asingletermthat is
proportional to the velocity of the mass. This model is known as the viscous
damping model; it leads to the differential equation
2
m%%—c%Jrku:o (10)

where the positive constant ¢ is the viscous damping coefficient.

The behavior of the solutions of ODE (10) is determined by the rootsr;
and r, of the characteristic polynomial equation,

mrl+cr+k=0

Using the quadratic formula, we find that the characteristicrootsr, andr, are

—C++/c? — 4mk —C—+/c%2— 4mk
r= o , T2= o (11)

The nature of the solutions of ODE (10) depends on the sign of the discrimi-
nant ¢ — 4mk. If ¢ # 4mk, thenry = r, and the general solution of ODE (10)
is
U= Cie'tt 4+ Ce? (12)
where C, and C, are arhitrary constants.
Themost important caseis underdamping and occurswhen ¢? — 4mk < 0,

which means that the damping is relatively small. In the underdamped case,
the characteristic rootsr, andr, in formula (11) are the complex numbers

r = _§n +ip, r2= _% —ip, wherep = 742;_ ¢ #0 (13)
Euler'sformulaimplies that
e @+t — e (cosBt + i sin Bt)
for any real numbers« and 8, so
et = e 2Mcosut +isinut), €2 =eV2Mcosut—isinut) (14)

Now, using the initial conditions together with equations (12) and (14), we
find that the solution of the IVP

d’u  du ,
m_dt2 + Ca +ku=0, u(Q) =ug, U0 =g (15)
isgiven by
u= eCt/zm{uo cos(ut) + [@ + %} sin(ut)} (16)
wo 2mp
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|:| Take alook at Screen 1.6
of Module 4.

t-u
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Figure 4.1: A solution curve of the
underdamped spring-mass ODE,
u"+0.1250 +u=0.

Figure 4.2: Solution curves of the
overdamped spring-mass ODE, u” +
21u +u=0.

O Verify that u(t) defined in formula (16) isa solution of IVP (15).

The solution (16) represents an oscillation with circular frequency u and
an exponentially decaying amplitude (see Figure 4.1). From the formula
in (13) we see that © < wo, Where wg = /k/m, but the difference is small
for small c.

If the damping is large enough so that ¢ — 4mk > 0O, then we have over-
damping and the solution of IV P (15) decays exponentially to the equilibrium
position but does not oscillate (see Figure 4.2). The transition from oscilla-
tory to nonoscillatory motion occurs when ¢? — 4mk = 0. The corresponding
value of ¢, given by co = 2+/mk, is called critical damping.

[0 Forced Oscillations

[] Fisasocaled the
input, or driving term; solutions
u(t) are the responsesto the
input and the initial data.

Now let's see what happens when an external forceis applied to the oscillat-
ing mass described by ODE (10). If F(t) represents the external force, then
ODE (10) becomes

d’u  du
Someinteresting things happen if F(t) isperiodic, so wewill look at the ODE
d’u du

+cC

mw ot + ku = Fgcos(wt) (18)
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[[] Check that this formula
gives solutions of ODE (18).

where Iy and w are the amplitude and circular frequency, respectively, of the
external force F. Then, in the underdamped case, the general solution of
ODE (18) hastheform

u(t) = e 2MC; cos(ut) + Cosin(ut)] + acos(wt) + bsin(wt)  (19)

where a and b are constants determined so that acos(wt) + bsin(wt) is a
solution of ODE (18). The constants a and b depend on m, ¢, k, Fg, and w of
ODE (18), but not on the initial data. The constants C; and C, can be chosen
so that u(t) given by formula (19) satisfies given initial conditions.

The first term on the right side of the solution (19) approaches zero as
t — +o0; thisis called the transient term. The remaining two terms do not
diminish as t increases, and their sum is called the steady-state solution (or
the forced oscillation), here denoted by us(t). Since the steady-state solution
persists forever with constant amplitude, it is frequently the most interesting
solution. Notice that it oscillates with the circular frequency  of the driving
force F. It can be written in the amplitude-phase form (8) as

us(t) = Acos(wt — §) (20)
where A and § are now given by
A= Fo Lt = ——— (1)
\/mz(a)g — w?)? + C?w? m(wg — @)

Figure 4.3 shows a graphical example of solutions that tend to a forced oscil-
lation.

For an underdamped system with fixed c, k, and m, the amplitude A of
the steady-state solution depends upon the frequency of the driving force. It

15 Input, three responses

=
o
|

(&)
|

Input F (dashed), u (solid)
& o
| \

[uy
o
|

-15 ‘ ‘ ‘ ‘ ‘ ‘

Figure 4.3: Solutions of u” + 0.3U' 4+ u = 10cos2t approach a unique forced
oscillation with the circular frequency 2 of the input.
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|:| Recall that the natural
circular frequency ay is the value

wp = JKk/m.

[J Beats

isimportant to know whether thereis avaue w = w, for which the amplitude
is maximized. If so, then driving the system at the circular frequency w
produces the greatest response. Using methods of calculus, it can be shown
that if ¢ < 2mk then w, is given by

2 2 c?
wy = wj (l — m) (22
The corresponding maximum value A, of the amplitude when o = wy is
F
A = s (23)

" Cwoy/1— (CZ/4mk)

O Does A have amaximum value when 2mk < ¢ < 4mk?

0 Find theforced oscillation for the ODE of Figure 4.3.

Let's polish the table and streamline the mass so that damping is negligible.
Then we apply a forcing function whose frequency is close to the natural
frequency of the spring-mass system, and watch the response. We can model
this by the IVP

U’ + wiu = % cos(wt), u@) =0, U0 =0 (24)

where |wg — w| issmall (but not zero). The solutionis

F
uct) = — i o [cos(wt) — cos(wot)]
_ 2F . [y — W . (wo+w
= [m(wg_wz)sm< > t)]sm(—z t) (25)

where trigonometric identities have been used to get from the first form of the
solution to the second. The term in sgquare brackets in formula (25) can be
viewed as a varying amplitude for the sinusoid term sin[ (wo + w)/2]t. Since
|wo — w| is small, the circular frequency (wg + w)/2 is much higher than the
low circular frequency (wo — w)/2 of the varying amplitude. Therefore we
have a rapid oscillation with a slowly varying amplitude. This is the beat
phenomenon illustrated on the chapter cover figure for the IVP

u” 4+ 25u=2cos(4.5t), u@ =0, U0 =0

If you try this out with adriven masson a spring you will seerapid oscillations
whose amplitude slowly grows and then diminishes in a repeating pattern.
This phenomenon can actually be heard when a pair of tuning forks which
have nearly egqual frequencies are struck simultaneously. We hear the “ beats”

as each acts as adriving force for the other.
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[0 Electrical Oscillations: An Analogy

R
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E® 1M )L
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[0 Seismographs

D Look at “ Earthquakes and
the Richter Scale” in Module 4.

Linear differential equations with constant coefficients are important because
they arisein so many different physical contexts. For example, an ODE sim-
ilar to ODE (17) can be used to model charge oscillations in an electrical
circuit. Suppose an electrical circuit contains a resistor, an inductor, and a
capacitor connected in series. The current | in the circuit and the charge Q
on the capacitor are functions of time t. Let’s assume we know the resistance
R, theinductance L, and the capacitance C. By Kirchhoff’s voltage law for a
closed circuit, the applied voltage E(t) isequal to the sum of the voltage drops
through the various elements of the circuit. Observations of circuits suggests
that these voltage drops are as follows:

e The voltage drop through the resistor is RI (Ohm’s law);
e The voltage drop through the inductor is L(d1 /dt) (Faraday’slaw);
e The voltage drop through the capacitor is Q/C (Coulomb’s law).

Thus, by Kirchhoff’s law, we obtain the differential equation
dl Q

La + RI + c= E(t) (26)
Since | = dQ/dt, we can write ODE (26) entirely in terms of Q,
¢?Q  ,dQ Q
LW + RE + c= E(t) (27

ODE (27) modelsthe charge Q(t) on the capacitor of what is called the simple
RLC circuit with voltage source E(t). ODE (27) is equivalent to ODE (17),
except for the symbols and their interpretations. Therefore we can also apply
conclusions about our spring-mass system to electrica circuits. For exam-
ple, we can interpret the ODE u” + 0.3u + u = 10cos2t, whose solutions are
graphed in Figure 4.3, as amodel either for the oscillations of a damped and
driven spring-mass system, or the charge on the capacitor of a driven RLC
circuit. We see that a mathematical model can have many interpretations, and
any mathematical conclusions about the model apply to every interpretation.

0 What substitutions of parameters and variables would you have to make
in ODE (27) to transform it to ODE (17)?

Seismographs are instruments that record the displacement of the ground asa
function of time, and a seismometer isthe part of a seismograph that responds
to the motion. Seismographs comein two generic types. Matt’s friend Seismo
is a horizontal -component seismograph, which records one of the horizontal
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|:| If you're queasy about
Ccross products or approximating
functions (aswedo in

formula (29)) you may prefer to
skip directly to ODE (33) or
ODE (34).

components of the earth’s local motion. Of course, two horizontal compo-
nents are required to specify fully horizontal motion, usually by means of
north-south and east-west components. The other type of seismograph records
the vertical component of motion. Both of these instruments are based on pen-
dulumsthat respond to the motion of the ground relative to the seismograph.

Since Seismo is an animation of a horizontal-component seismograph,
we'll outline the derivation of the ODEs that govern the motion of his arm.
The starting point is the angular form of Newton’s second law of motion, also
known as the angular momentum law:

d

where L is the angular momentum of a mass (Seismo’s arm and hand) about
afixed axis, F is the force acting on the mass, R is the position vector from
the center of mass of Seismo’s arm and hand to the axis, and x is the vector
cross product.

We'll apply this law using an orthogonal xyz-coordinate system which is
illustrated on Screen 2.2 of Module 4. In this system the y-axisis horizontal.
Seismo’s body is parallel to the z-axis and the rest position of Seismo’'s arm
is parallel to the x-axis. The z-axis is not parallel to the local vertical, but
instead isthe axiswhich resultsfrom rotating thelocal vertical through asmall
angle o about the y-axis. Because of this small tilt, the x-axis points sightly
downward and the arm is in a stable equilibrium position when it is parallel
to the x-axis. The seismic disturbanceis assumed to be in the direction of the
y-axis. The xz-planeis called Seismo’srest plane.

Seismo’s hand writes on the paper in the xy-plane, and the angle 6 mea-
sures the angular displacement of his arm from its rest position. Consider an
axispointing in the z-direction and through the center of mass of Seismo’'sarm
and hand, and let m represent the mass of the arm and hand. The z-component
of the angular momentum about that axis is mr2(do/dt) wherer isthe radius
of gyration of the arm.

To compute the right-hand side of ODE (28), we need to know R, the
position vector from the center of mass of Seismo’sarm and hand to the origin.
Note that

R = —I cosf% — 1 singy

where | is the distance from the center of mass to Seismo’s body, and X and
¥ are unit vectors along the positive x- and y-axes. For small 9, we have the
approximations cosf ~ 1 and siné ~ 6, so

R=—-Ix—16y (29)

Using equation (29) in ODE (28) and computing the cross product, we obtain
2

w29l _ _jpw +16F® (30)

dt?
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D Thisisviscous friction.

indicating by superscripts the components of the net force F exerted on the
arm and hand.

Now we need expressions for the two components of F in ODE (30). If
the x-component of friction is assumed negligible then the two force compo-
nents acting in the x-direction are the x-component of the gravitational force
and the x-component of the force due to the seismic disturbance. Because
the arm displacement angle 6 and the body inclination angle « are both as-
sumed small, the x-component of the force due to the seismic disturbance can
be shown to be negligible also. Therefore the x-component of the net force,
F(x) isgiven by the simple form

F® ~ mga (31

The right side of equation (31) is the gravity component mgsina approxi-
mated by mga.

In the y-direction, the forces acting are the force due to the seismic dis-
turbance and to friction, the latter assumed to be proportional to the angular
velocity do/dt. The force due to the seismic disturbance can be computed
as follows. Let h be a small ground displacement in the y-direction. Then
the y-coordinate of the center of massis approximately h + 10. Therefore the
force due to the earthquake is approximated by

d? d?h d?0
—(h+10) =m— | —
Mo "= Mg T M e
and the net forcein the y-directionis
2 2
FY ~ m@ +ml % — k% (32)

dt? dt? dt
wherek is a positive constant characterizing the effect of friction.

Combining ODE (30) with formulas (31) and (32), we find that the mo-

tions of Seismo’s arm are governed by the ODE

d%  do 2 _ 1 d%h

Tl T " Tae
In ODE (33) the quantities w3, L, and ¢ are given by w3 = go/L, where
L= (r?+1%/1, and c = k/(mL). We can interpret the terms in (33) as
follows. Thefirst term on theleft arises from the inertia of Seismo’s hand and
arm. The second term models the frictional force due to the angular motion
of the arm. The third term, arising from gravity and thetilt of the arm, is the
restoring force for the oscillations of the arm and hand. Finally, the term on
the right arises from the effective force of the seismic displacement.

To simplify ODE (33) alittle more, we let h(t) = Hf (t), where H isthe
maximum ground displacement, which means that the maximum value of the
dimensionless ground displacement f (t) isone. Then ODE (33) becomesthe
following equation for the dimensionless arm displacement y(t) = LO(t)/H:

d’y  dy d?f

_— [ 2 —
a2 Tl T T T

(33)

(34)
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|:| A given ODE can model a
variety of phenomena.
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Figure 4.4: The sweep on c generated five solution curves. The selected
curve is highlighted, and the corresponding solution u(t) satisfies the condi-
tion |u(t)| < 0.05 for t > 40. The data tells us that ¢ = 0.175 for the curve.

--+0DE Architect Tool - CH4FIG6.0DX IS [=] ES
File Edit Search Equations Solutions Tools Help
BH| «mE ¥ |2 nm W LA
/*Mow let's take a look at Problem 2. U
Enter the system of
QDEs eguivalent to ODE (35): w7
uo=v
v = —ktu-ctv

k=1;: c =1

/* How let's use the Dual (Matrix)
sweep to go through a matrix of values _0.025

of ¢ and k. We have activated the

Explore feature by selecting a curve, |index 33

then clicking on the Explore icon oMz
(below "Solutions"™ on the top menu v oo0zEn t
bar). This particular valus of o 008 Equil D ata fodsl
glearly isn't c*! */ !
& b2 W t c k = E’
i E 05 000322068 |3336 02 05
4, Enter | Solve Sweep [ER] Extend | &1 Bl Mll-oooszim1s [zeae 0z 05
Tome of sweep 33 0014738 000716718 |98 02 05
’7(' Singls € Dual [Linear] & Dual Matrix) | 332 |-00155633  |-0.00B0S701 |3372 0.2 0.5
~Sweep 1 332 00162364 000500287 [29.84 02 U.5_|
Stark Stop # Points 334 00167716 0.00331092 (3996 0z 0.5
[ = [ NE [RE H||lz35 [om7i7as |o0028112 4008 0.2 0E
[ Sweep 33 00174465 000171758 [40.2 02 05
Start Stop # Paints = _"—I Sween
S | CER G =
W AZA3 145 MES
i :)\Swaegﬁolvel AE quilibriurn tu e fuew £20 430 [Equil kData fModel
| Equation set successfully solved | | 13:1 ‘

Figure 4.5: The Dual (Matrix) feature produces six solutions for various val-
ues of ¢ and k. We have selected one of them (the highlighted curve) and
used the Explore option to get additional information.
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Exploration 4.1. The Damping Coefficient

Assume that Dogmatic’s oscillations satisfy the IVP

U +cud+ku=0, u0=1 u0=0 (35)

1. Let k=1 and use ODE Architect to estimate the smallest value c* of the
damping coefficient ¢ so that |u(t)| < 0.05 for al t > 40. [Suggestion: Fig-
ure 4.4 illustrates one way to estimate ¢* by using the Select feature and the
Datatable]

2. Repeat Problem 1 for other values of k, including k = %, 3, 2, and 4. How
does c* change as k changes? [Suggestion: Figure 4.5 shows the outcome
of using a Dual (Matrix) sweep on the values of ¢ and k, and then using the
Explore feature.]
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3. Letk=10inIVP(35).

(@) Findthevalue of cfor whichtheratio of successive maximain thegraph
of uvs. tis0.75.

(b) Why isthe ratio between successive maxima aways the same?
Note: Since the values of the maxima can be observed experimentally,
this provides a practical way to determine the value of the damping
coefficient ¢, which may be difficult to measure directly.
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Exploration 4.2. Response to the Forcing Frequency

1. Supposethat Dogmatic’s oscillations satisfy the differential equation
2u” + U’ + 4u = 2 cos(wt)

Let w = 1. Select your own initial conditions and use ODE Architect to plot
the solution over a long enough time interval that the transient part of the
solution becomes negligible. From the graph, determine the amplitude Ag of
Dogmatic's steady-state solution.

2. Repeat Problem 1 for other values of w. Plot the corresponding pairs w, As
and sketch the graph of Ag vs. w. Estimate the value of w for which Ag is
amaximum. Note: You may want to use the Lookup Table feature of ODE
Architect (see Module 1 and Chapter 1 for details).
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In Problems 1 and 2, the value of the damping coefficient ¢ is 1. Repeat
your calculations for ¢ = 3 and ¢ = . How does the maximum value of Ag

change as the value of ¢ changes? Compare your results with the predictions
of formula (23).
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Exploration 4.3. Low- and High-Frequency Quakes

In experiments with Seismo, you used ODE (34) to find the response of his
arm to different ground displacements of sinusoidal type, f(t) = coswt, when
1 <w < 5. In this exploration you’ll investigate what happens for ground
displacements with frequencies that are lower or higher than these values.

1. Choosec=2and wg= 3in ODE (34), and set theinitia conditions y(0) and
y'(0) to zero. Use f(t) = coswt with w = 0.5 for the ground displacement.
Use ODE Architect to plot the displacement y(t) determined from ODE (34);
also plot f(t) on the same graph. How do the features of y(t) compare with
those of f(t)?

2. Repeat Problem 1 for values of w smaller than 0.5. Be sure to plot for along
enough time interval to see the relevant time variations. What do you think is
Seismo’s arm response as w approaches zero? How does this compare with
the corresponding response of a mass on a spring from ODE (18)?
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3. Repeat Problem 1 for values of w larger than 5, such as w = 10 and w = 20.
What do you think is Seismo’s arm response as w becomes very large?



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 4.4. Different Ground Displacements

In explorations with Seismo, we assumed that the dimensionless ground dis-
placements f(t) are sinusoidal, with a single frequency. Real earthquakes
however, are not so simple: you’ll investigate other possibilities in the fol-
lowing problems. The ODE for Seismo’s dimensionless arm displacement
y(t) is

d’y  dy d? f

2
a2 TSt T T (36)

Suppose the ground displacement can be modeled by the function

2
w7 e

How do you interpret this motion? Choose ¢ = 2 and wg = 3, and set y(0) =
y'(0) = 0. Use ODE Architect to find y(t) from ODE (36) for thecase T =
2, and display both y(t) and f(t). Note: d?f/dt?> can be written using a
step function. How do the features of y(t) compare with those of f (t)? For
example, what is the maximum magnitude of y(t), and when doesit occur?
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2. Now supposethat the ground motionisgiven by thefunction f = e~ sin(xt).
Choose some values of a in the range 0 < a < 0.5 and study how Seismo’s
arm displacements change with the parameter a.

3. How do you think the results of Problem 2 would change if the period of the
sinusoidal oscillation were different from 2? Try afew cases to check your
predictions.



