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The phenomenon of beats.

Overview Second-order linear differential equations, especially those with constant coeffi-
cients, have a host of important applications. In this chapter we explore some
phenomena involving mechanical and electrical oscillations. The first submodule
deals with some basic features common to oscillations of all sorts. The second
submodule applies some of these results to seismographs, which are instruments
used for recording earthquake data.

Key words Oscillation; period; frequency; amplitude; phase; simple harmonic motion; viscous
damping; underdamping; overdamping; critical damping; transient; steady-state
solution; forced oscillation; seismograph; Kirchhoff’s laws

See also Chapter 5 for more on vectors and damping, Chapters 6 and 10 for more on oscil-
lations, and Chapter 12 for more on forced oscillations.
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◆ Second-Order ODEs and the Architect

ODE Architect will accept only first-order ODEs, so how can we use it to
solve a second-order ODE? There is a neat trick that does the job, and an
example will show how. Suppose we want to use ODE Architect to study the
behavior of the initial value problem (or IVP):

u′′ + 3u′ + 10u = 5 cos(2t), u(0) = 1, u′(0) = 0 (1)

Let’s write v = u′, then

v′ = d
dt

(v) = d
dt

(u′) = u′′

but

u′′ = −10u − 3u′ + 5 cos(2t)

so IVP (1) becomes

u′ = v, u(0) = 1

v′ = −10u − 3v + 5 cos(2t), v(0) = 0
(2)

ODE Architect won’t accept IVP (1), but it will accept the equivalent IVP (2).☞ ODE Architect only
accepts ODEs in normal form;
for example, write 2x′ + x = 6 as
x′ = x/2 + 3 with the x′ term
alone on the left.

The components u and v give the solution of IVP (1) and its first derivative
u′ = v. Therefore, if we use ODE Architect to solve and plot the component
curve u(t) of system (2), we are simultaneously plotting the solution u(t) of
IVP (1).

✓ “Check” your understanding by converting the IVP

2u′′ − 2u′ + 3u = − sin(4t), u(0) = −1, u′(0) = 2

to an equivalent IVP involving a system of two normalized first-order ODEs.

◆ Undamped Oscillations

Second-order differential equations arise naturally in physical situations; for
example, the motion of an object is described by Newton’s second law, F =
ma. Here, a is the acceleration, which is the second derivative of the object’s
position. Many of these differential equations lead to oscillations or vibra-
tions. Many oscillating systems can be modeled by a system consisting of a
mass attached to a spring where the motion takes place in a horizontal direc-
tion on a table. This simplifies the derivation of the equation of motion, but the
same equation also describes the up-and-down motion of a mass suspended
by a vertical spring.

Let’s assume an ideal situation: there is no friction between the mass and
the table, there is no air resistance, and there is no dissipation of energy in the
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spring or anywhere else in the system. The differential equation describing
the motion of the mass is

m

�u

k
m

d2u
dt2 = −ku (3)

where u(t) is the position of the mass m relative to its equilibrium and k is the
spring constant. The natural tendency of the spring to return to its equilibrium
position is represented by the restoring force −ku. Two initial conditions,☞ This is also called Hooke’s

law restoring force.
u(0) = u0, u′(0) = v0 (4)

where u0 and v0 are the initial position and velocity of the mass, respectively,
determine the position of the mass uniquely. ODE (3) together with the ini-
tial conditions (4) constitute a well-formulated initial value problem whose
solution predicts the position of the mass at any future time.

The general solution of ODE (3) is☞ See the first two references
for derivations of formula (5).

u(t) = C1 cos(ω0t) + C2 sin(ω0t) (5)

where C1 and C2 are arbitrary constants and ω2
0 = k/m. Applying the initial

conditions (4), we find that C1 = u0 and C2 = v0/ω0. Thus the solution of the
IVP (3), (4) is

u(t) = u0 cos(ω0t) + (v0/ω0) sin(ω0t) (6)

The corresponding motion of the mass is periodic, which means that it repeats
itself after the passage of a time interval T called the period. If we measure
time in seconds, then the quantity ω0 is the natural (circular) frequency in☞ The term “circular

frequency” is only used with
trigonometric functions.

radians/sec, and T is given by

T = 2π/ω0 (7)

The reciprocal of T , or ω0/2π, is the frequency of the oscillations measured
in cycles per second, or hertz. Notice that since ω0 = √

k/m, the frequency
and the period depend only on the mass and the spring constant and not on the
initial data u0 and v0.

By using a trigonometric identity, the solution (6) can be rewritten in the
amplitude-phase form as a single cosine term:

☞ This motion is called
simple harmonic motion. See
Screeen 1.3 of Module 4 for
graphs.

u(t) = A cos(ω0t − δ) (8)

where A and δ are expressed in terms of u0 and v0/ω0 by the equations

A =
√

u2
0 + (v0/ω0)2, tan δ = v0

u0ω0
(9)

The quantity A determines the magnitude or amplitude of the oscillation (8),
and δ, called the phase (or phase shift), measures the time translation from a
standard cosine curve.

✓ Show that (8) is equivalent to (6) when A and δ are defined by (9).
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◆ The Effect of Damping

Equation (8) predicts that the periodic oscillation will continue indefinitely. A
more realistic model of an oscillating spring must include damping. A simple,
useful model results if we represent the damping force by a single term that is☞ The viscous damping

force is −c du/dt. proportional to the velocity of the mass. This model is known as the viscous
damping model; it leads to the differential equation

m
d2u
dt2 + c

du
dt

+ ku = 0 (10)

where the positive constant c is the viscous damping coefficient.
The behavior of the solutions of ODE (10) is determined by the roots r1

and r2 of the characteristic polynomial equation,

mr2 + cr + k = 0

Using the quadratic formula, we find that the characteristic roots r1 and r2 are

r1 = −c +
√

c2 − 4mk
2m

, r2 = −c −
√

c2 − 4mk
2m

(11)

The nature of the solutions of ODE (10) depends on the sign of the discrimi-
nant c2 −4mk. If c2 �= 4mk, then r1 �= r2 and the general solution of ODE (10)
is☞ Check that this equation

gives a solution of ODE (10).

u = C1er1t + C2er2t (12)

where C1 and C2 are arbitrary constants.
The most important case is underdamping and occurs when c2 − 4mk < 0,

which means that the damping is relatively small. In the underdamped case,
the characteristic roots r1 and r2 in formula (11) are the complex numbers

r1 = − c
2m

+ iµ, r2 = − c
2m

− iµ, where µ =
√

4mk − c2

2m
�= 0 (13)

Euler’s formula implies that

e(α+iβ)t = eαt(cosβt + i sin βt)

for any real numbers α and β, so

er1t = e−ct/2m(cosµt + i sin µt), er2t = e−ct/2m(cosµt − i sin µt) (14)

Now, using the initial conditions together with equations (12) and (14), we
find that the solution of the IVP

m
d2u
dt2

+ c
du
dt

+ ku = 0, u(0) = u0, u′(0) = v0 (15)

is given by☞ Solutions of an
underdamped ODE oscillate with
circular frequency µ and an
exponentially decaying
amplitude.

u = e−ct/2m

{
u0 cos(µt) +

[
v0

µ
+ cu0

2mµ

]
sin(µt)

}
(16)
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Figure 4.1: A solution curve of the
underdamped spring-mass ODE,
u′′ + 0.125u′ + u = 0.
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Figure 4.2: Solution curves of the
overdamped spring-mass ODE, u′′ +
2.1u′ + u = 0.

✓ Verify that u(t) defined in formula (16) is a solution of IVP (15).

The solution (16) represents an oscillation with circular frequency µ and
an exponentially decaying amplitude (see Figure 4.1). From the formula
in (13) we see that µ < ω0, where ω0 = √

k/m, but the difference is small
for small c.

If the damping is large enough so that c2 − 4mk > 0, then we have over-☞ Take a look at Screen 1.6
of Module 4. damping and the solution of IVP (15) decays exponentially to the equilibrium

position but does not oscillate (see Figure 4.2). The transition from oscilla-
tory to nonoscillatory motion occurs when c2 − 4mk = 0. The corresponding
value of c, given by c0 = 2

√
mk, is called critical damping.

◆ Forced Oscillations

Now let’s see what happens when an external force is applied to the oscillat-
ing mass described by ODE (10). If F(t) represents the external force, then☞ F(t) is also called the

input, or driving term; solutions
u(t) are the responses to the
input and the initial data.

ODE (10) becomes

m
d2u
dt2 + c

du
dt

+ ku = F(t) (17)

Some interesting things happen if F(t) is periodic, so we will look at the ODE

m
d2u
dt2 + c

du
dt

+ ku = F0 cos(ωt) (18)
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where F0 and ω are the amplitude and circular frequency, respectively, of the
external force F. Then, in the underdamped case, the general solution of
ODE (18) has the form☞ Check that this formula

gives solutions of ODE (18).
u(t) = e−ct/2m[C1 cos(µt) + C2 sin(µt)] + a cos(ωt) + b sin(ωt) (19)

where a and b are constants determined so that a cos(ωt) + b sin(ωt) is a
solution of ODE (18). The constants a and b depend on m, c, k, F0, and ω of
ODE (18), but not on the initial data. The constants C1 and C2 can be chosen
so that u(t) given by formula (19) satisfies given initial conditions.

The first term on the right side of the solution (19) approaches zero as
t → +∞; this is called the transient term. The remaining two terms do not
diminish as t increases, and their sum is called the steady-state solution (or
the forced oscillation), here denoted by us(t). Since the steady-state solution
persists forever with constant amplitude, it is frequently the most interesting
solution. Notice that it oscillates with the circular frequency ω of the driving
force F. It can be written in the amplitude-phase form (8) as

us(t) = A cos(ωt − δ) (20)

where A and δ are now given by

A = F0√
m2(ω2

0 − ω2)2 + c2ω2
, tan δ = cω

m(ω2
0 − ω2)

(21)

Figure 4.3 shows a graphical example of solutions that tend to a forced oscil-
lation.

For an underdamped system with fixed c, k, and m, the amplitude A of
the steady-state solution depends upon the frequency of the driving force. It
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Figure 4.3: Solutions of u′′ + 0.3u′ + u = 10 cos 2t approach a unique forced
oscillation with the circular frequency 2 of the input.
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is important to know whether there is a value ω = ωr for which the amplitude
is maximized. If so, then driving the system at the circular frequency ωr

produces the greatest response. Using methods of calculus, it can be shown
that if c2 < 2mk then ωr is given by

☞ Recall that the natural
circular frequency ω0 is the value
ω0 = √

k/m.

ω2
r = ω2

0

(
1 − c2

2mk

)
(22)

The corresponding maximum value Ar of the amplitude when ω = ωr is

Ar = F0

cω0

√
1 − (c2/4mk)

(23)

✓ Does A have a maximum value when 2mk < c2 < 4mk?

✓ Find the forced oscillation for the ODE of Figure 4.3.

◆ Beats

Let’s polish the table and streamline the mass so that damping is negligible.
Then we apply a forcing function whose frequency is close to the natural
frequency of the spring-mass system, and watch the response. We can model
this by the IVP

u′′ + ω2
0u = F0

m
cos(ωt), u(0) = 0, u′(0) = 0 (24)

where |ω0 − ω| is small (but not zero). The solution is

u(t) = F0

m(ω2
0 − ω2)

[cos(ωt) − cos(ω0t)]

=
[

2F0

m(ω2
0 − ω2)

sin
(ω0 − ω

2
t
)]

sin

(
ω0 + ω

2
t

)
(25)

where trigonometric identities have been used to get from the first form of the
solution to the second. The term in square brackets in formula (25) can be
viewed as a varying amplitude for the sinusoid term sin[(ω0 + ω)/2]t. Since
|ω0 − ω| is small, the circular frequency (ω0 + ω)/2 is much higher than the
low circular frequency (ω0 − ω)/2 of the varying amplitude. Therefore we
have a rapid oscillation with a slowly varying amplitude. This is the beat
phenomenon illustrated on the chapter cover figure for the IVP

u′′ + 25u = 2 cos(4.5t), u(0) = 0, u′(0) = 0

If you try this out with a driven mass on a spring you will see rapid oscillations
whose amplitude slowly grows and then diminishes in a repeating pattern.
This phenomenon can actually be heard when a pair of tuning forks which
have nearly equal frequencies are struck simultaneously. We hear the “beats”
as each acts as a driving force for the other.
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◆ Electrical Oscillations: An Analogy

Linear differential equations with constant coefficients are important because

Y

L

R

C

E(t) I(t)
+
−

they arise in so many different physical contexts. For example, an ODE sim-
ilar to ODE (17) can be used to model charge oscillations in an electrical
circuit. Suppose an electrical circuit contains a resistor, an inductor, and a
capacitor connected in series. The current I in the circuit and the charge Q
on the capacitor are functions of time t. Let’s assume we know the resistance
R, the inductance L, and the capacitance C. By Kirchhoff’s voltage law for a
closed circuit, the applied voltage E(t) is equal to the sum of the voltage drops
through the various elements of the circuit. Observations of circuits suggests
that these voltage drops are as follows:

• The voltage drop through the resistor is RI (Ohm’s law);

• The voltage drop through the inductor is L(dI/dt) (Faraday’s law);

• The voltage drop through the capacitor is Q/C (Coulomb’s law).

Thus, by Kirchhoff’s law, we obtain the differential equation

L
dI
dt

+ RI + Q
C

= E(t) (26)

Since I = dQ/dt, we can write ODE (26) entirely in terms of Q,

L
d2 Q
dt2

+ R
dQ
dt

+ Q
C

= E(t) (27)

ODE (27) models the charge Q(t) on the capacitor of what is called the simple
RLC circuit with voltage source E(t). ODE (27) is equivalent to ODE (17),
except for the symbols and their interpretations. Therefore we can also apply
conclusions about our spring-mass system to electrical circuits. For exam-
ple, we can interpret the ODE u′′ + 0.3u + u = 10 cos2t, whose solutions are
graphed in Figure 4.3, as a model either for the oscillations of a damped and
driven spring-mass system, or the charge on the capacitor of a driven RLC
circuit. We see that a mathematical model can have many interpretations, and
any mathematical conclusions about the model apply to every interpretation.

✓ What substitutions of parameters and variables would you have to make
in ODE (27) to transform it to ODE (17)?

◆ Seismographs

Seismographs are instruments that record the displacement of the ground as a☞ Look at “Earthquakes and
the Richter Scale” in Module 4. function of time, and a seismometer is the part of a seismograph that responds

to the motion. Seismographs come in two generic types. Matt’s friend Seismo
is a horizontal-component seismograph, which records one of the horizontal
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components of the earth’s local motion. Of course, two horizontal compo-
nents are required to specify fully horizontal motion, usually by means of
north-south and east-west components. The other type of seismograph records
the vertical component of motion. Both of these instruments are based on pen-
dulums that respond to the motion of the ground relative to the seismograph.

Since Seismo is an animation of a horizontal-component seismograph,
we’ll outline the derivation of the ODEs that govern the motion of his arm.☞ If you’re queasy about

cross products or approximating
functions (as we do in
formula (29)) you may prefer to
skip directly to ODE (33) or
ODE (34).

The starting point is the angular form of Newton’s second law of motion, also
known as the angular momentum law:

d
dt

L = R × F (28)

where L is the angular momentum of a mass (Seismo’s arm and hand) about
a fixed axis, F is the force acting on the mass, R is the position vector from
the center of mass of Seismo’s arm and hand to the axis, and × is the vector
cross product.

We’ll apply this law using an orthogonal xyz-coordinate system which is
illustrated on Screen 2.2 of Module 4. In this system the y-axis is horizontal.
Seismo’s body is parallel to the z-axis and the rest position of Seismo’s arm
is parallel to the x-axis. The z-axis is not parallel to the local vertical, but
instead is the axis which results from rotating the local vertical through a small
angle α about the y-axis. Because of this small tilt, the x-axis points slightly
downward and the arm is in a stable equilibrium position when it is parallel
to the x-axis. The seismic disturbance is assumed to be in the direction of the
y-axis. The xz-plane is called Seismo’s rest plane.

Seismo’s hand writes on the paper in the xy-plane, and the angle θ mea-
sures the angular displacement of his arm from its rest position. Consider an
axis pointing in the z-direction and through the center of mass of Seismo’s arm
and hand, and let m represent the mass of the arm and hand. The z-component
of the angular momentum about that axis is mr2(dθ/dt) where r is the radius
of gyration of the arm.

To compute the right-hand side of ODE (28), we need to know R, the
position vector from the center of mass of Seismo’s arm and hand to the origin.
Note that

R = −l cos θx̂ − l sin θŷ

where l is the distance from the center of mass to Seismo’s body, and x̂ and
ŷ are unit vectors along the positive x- and y-axes. For small θ, we have the
approximations cos θ ≈ 1 and sin θ ≈ θ, so

R = −lx̂ − lθŷ (29)

Using equation (29) in ODE (28) and computing the cross product, we obtain

mr2 d2θ

dt2 = −l F(y) + lθF(x) (30)
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indicating by superscripts the components of the net force F exerted on the
arm and hand.

Now we need expressions for the two components of F in ODE (30). If
the x-component of friction is assumed negligible then the two force compo-
nents acting in the x-direction are the x-component of the gravitational force
and the x-component of the force due to the seismic disturbance. Because
the arm displacement angle θ and the body inclination angle α are both as-
sumed small, the x-component of the force due to the seismic disturbance can
be shown to be negligible also. Therefore the x-component of the net force,
F(x) is given by the simple form

F(x) ≈ mgα (31)

The right side of equation (31) is the gravity component mg sin α approxi-
mated by mgα.

In the y-direction, the forces acting are the force due to the seismic dis-
turbance and to friction, the latter assumed to be proportional to the angular☞ This is viscous friction.

velocity dθ/dt. The force due to the seismic disturbance can be computed
as follows: Let h be a small ground displacement in the y-direction. Then
the y-coordinate of the center of mass is approximately h + lθ. Therefore the
force due to the earthquake is approximated by

m
d2

dt2
(h + lθ) = m

d2h
dt2

+ ml
d2θ

dt2

and the net force in the y-direction is

F(y) ≈ m
d2h
dt2 + ml

d2θ

dt2 − k
dθ

dt
(32)

where k is a positive constant characterizing the effect of friction.
Combining ODE (30) with formulas (31) and (32), we find that the mo-

tions of Seismo’s arm are governed by the ODE

d2θ

dt2
+ c

dθ

dt
+ ω2

0θ = − 1
L

d2h
dt2

(33)

In ODE (33) the quantities ω2
0, L, and c are given by ω2

0 = gα/L, where
L = (r2 + l2)/ l, and c = k/(mL). We can interpret the terms in (33) as
follows. The first term on the left arises from the inertia of Seismo’s hand and
arm. The second term models the frictional force due to the angular motion
of the arm. The third term, arising from gravity and the tilt of the arm, is the
restoring force for the oscillations of the arm and hand. Finally, the term on
the right arises from the effective force of the seismic displacement.

To simplify ODE (33) a little more, we let h(t) = H f (t), where H is the
maximum ground displacement, which means that the maximum value of the
dimensionless ground displacement f (t) is one. Then ODE (33) becomes the
following equation for the dimensionless arm displacement y(t) = Lθ(t)/H:

d2 y
dt2 + c

dy
dt

+ ω2
0 y = −d2 f

dt2 (34)
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This is the ODE used in Screen 2.3 of Module 4.
It’s an important result that ODE (34) is the same type as ODE (18),☞ A given ODE can model a

variety of phenomena. the only differences being in the definitions of the parameters that multiply
the individual terms, and in the choice of variables. A second striking result is
that this same ODE (34) applies as well to the motions of a vertical component
seismograph. All that is necessary are other modifications in the meanings of
the parameters and functions. Details are available in the book by Bullen and
Bolt in the references.
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Figure 4.4: The sweep on c generated five solution curves. The selected
curve is highlighted, and the corresponding solution u(t) satisfies the condi-
tion |u(t)| < 0.05 for t ≥ 40. The data tells us that c = 0.175 for the curve.

Figure 4.5: The Dual (Matrix) feature produces six solutions for various val-
ues of c and k. We have selected one of them (the highlighted curve) and
used the Explore option to get additional information.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 4.1. The Damping Coefficient

Assume that Dogmatic’s oscillations satisfy the IVP

u′′ + cu′ + ku = 0, u(0) = 1, u′(0) = 0 (35)

1. Let k = 1 and use ODE Architect to estimate the smallest value c∗ of the
damping coefficient c so that |u(t)| ≤ 0.05 for all t ≥ 40. [Suggestion: Fig-
ure 4.4 illustrates one way to estimate c∗ by using the Select feature and the
Data table.]

2. Repeat Problem 1 for other values of k, including k = 1
4 , 1

2 , 2, and 4. How
does c∗ change as k changes? [Suggestion: Figure 4.5 shows the outcome
of using a Dual (Matrix) sweep on the values of c and k, and then using the
Explore feature.]
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3. Let k = 10 in IVP (35).

(a) Find the value of c for which the ratio of successive maxima in the graph
of u vs. t is 0.75.

(b) Why is the ratio between successive maxima always the same?
Note: Since the values of the maxima can be observed experimentally,
this provides a practical way to determine the value of the damping
coefficient c, which may be difficult to measure directly.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 4.2. Response to the Forcing Frequency

1. Suppose that Dogmatic’s oscillations satisfy the differential equation

2u′′ + u′ + 4u = 2 cos(ωt)

Let ω = 1. Select your own initial conditions and use ODE Architect to plot
the solution over a long enough time interval that the transient part of the
solution becomes negligible. From the graph, determine the amplitude As of
Dogmatic’s steady-state solution.

2. Repeat Problem 1 for other values of ω. Plot the corresponding pairs ω, As

and sketch the graph of As vs. ω. Estimate the value of ω for which As is
a maximum. Note: You may want to use the Lookup Table feature of ODE
Architect (see Module 1 and Chapter 1 for details).
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3. In Problems 1 and 2, the value of the damping coefficient c is 1. Repeat
your calculations for c = 1

2 and c = 1
4 . How does the maximum value of As

change as the value of c changes? Compare your results with the predictions
of formula (23).
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 4.3. Low- and High-Frequency Quakes

In experiments with Seismo, you used ODE (34) to find the response of his
arm to different ground displacements of sinusoidal type, f (t) = cos ωt, when
1 ≤ ω ≤ 5. In this exploration you’ll investigate what happens for ground
displacements with frequencies that are lower or higher than these values.

1. Choose c = 2 and ω0 = 3 in ODE (34), and set the initial conditions y(0) and
y′(0) to zero. Use f (t) = cosωt with ω = 0.5 for the ground displacement.
Use ODE Architect to plot the displacement y(t) determined from ODE (34);
also plot f (t) on the same graph. How do the features of y(t) compare with
those of f (t)?

2. Repeat Problem 1 for values of ω smaller than 0.5. Be sure to plot for a long
enough time interval to see the relevant time variations. What do you think is
Seismo’s arm response as ω approaches zero? How does this compare with
the corresponding response of a mass on a spring from ODE (18)?
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3. Repeat Problem 1 for values of ω larger than 5, such as ω = 10 and ω = 20.
What do you think is Seismo’s arm response as ω becomes very large?
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 4.4. Different Ground Displacements

In explorations with Seismo, we assumed that the dimensionless ground dis-
placements f (t) are sinusoidal, with a single frequency. Real earthquakes
however, are not so simple: you’ll investigate other possibilities in the fol-
lowing problems. The ODE for Seismo’s dimensionless arm displacement
y(t) is

d2 y
dt2

+ c
dy
dt

+ ω2
0 y = −d2 f

dt2
(36)

1. Suppose the ground displacement can be modeled by the function

f (t) =
{

(t/T )2, 0 ≤ t ≤ T
1, t > T

How do you interpret this motion? Choose c = 2 and ω0 = 3, and set y(0) =
y′(0) = 0. Use ODE Architect to find y(t) from ODE (36) for the case T =
2, and display both y(t) and f (t). Note: d2 f/dt2 can be written using a
step function. How do the features of y(t) compare with those of f (t)? For
example, what is the maximum magnitude of y(t), and when does it occur?
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2. Now suppose that the ground motion is given by the function f = e−at sin(πt).
Choose some values of a in the range 0 < a ≤ 0.5 and study how Seismo’s
arm displacements change with the parameter a.

3. How do you think the results of Problem 2 would change if the period of the
sinusoidal oscillation were different from 2? Try a few cases to check your
predictions.


