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Some Cool ODEs
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A room heats up in the morning, and the air conditioner in the room
starts its on-off cycles.

Overview In this chapter, we’ll use Newton’s law of cooling to build mathematical models
of a number of situations that involve the variation of temperature in a body with
time. Some of our models involve ODEs that can be solved analytically; others will
be solved numerically by ODE Architect. We’ll compare the analytical solutions
and the numerical results and see how both can be used to verify predictions
made by the models.

Key words Modeling; Newton’s law of cooling (and warming); initial conditions; general solu-
tion; separation of variables; integrating factor; heat energy; melting; air condition-
ing

See also Chapter 1 for more on modeling and Chapter 2 for the technique of separation of
variables.
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◆ Newton’s Law of Cooling

Have you ever gotten an order of piping hot French fries, only to find them
ice cold in what seems like a matter of moments? Whenever an object (or
substance) is warmer than its surroundings, it cools because it loses heat en-
ergy. The greater the temperature difference between the object and its sur-
roundings, the faster the object cools. The temperature of a body rises if its
surroundings are at a higher temperature than it is. What happens to the ice
cream in a cone on a hot day?

Although it is an oversimplification, we will assume that the temperature
is uniform at all points in the objects we wish to model, but the temperature
may change with time. Let’s assume that the rate of change of the object’s
temperature is proportional to the difference between its temperature and that
of its surroundings. Stated mathematically, we have:

☞ This becomes a “law of
warming” if the surroundings are
hotter than the object.

Newton’s law of cooling. If T(t) is the temperature of an object at time
t and Tout(t) is the temperature of its surroundings, then

dT
dt

= k(Tout − T ) (1)

where k is a positive constant called the cooling coefficient.

◆ Cooling an Egg

What happens to the temperature of a hard-boiled egg when you take it out
of a pot of boiling water? At first, the egg is the same temperature as the
boiling water. Once you take it out of the water the egg begins to cool, rapidly
at first and then more slowly. The temperature of the egg, T(t), drops at a
rate proportional to the difference between the temperature of the air, Tout,
and T(t). Notice from ODE (1) that if Tout < T(t), the rate of change of
temperature, dT/dt, is negative, so T(t) decreases and your egg cools.

✓ “Check” your understanding by answering this question: What happens
to the temperature of an egg if it is boiled at 212◦F and then transferred to an
oven at 400◦F?

◆ Finding a General Solution

Equation (1) is a first-order ODE and its general solution contains one arbi-
trary constant. We can see this as follows: If Tout is a constant, then ODE (1)
is separable, and separating the variables we have☞ See Chapter 2 for how to

solve a separable ODE. ∫
dT

Tout − T
=

∫
k dt
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Finding an antiderivative for each side we obtain

☞ Why are the absolute value
signs needed?

− ln |Tout − T(t)| = kt + K

where K is an arbitrary constant. Multiplying through by −1 and exponenti-
ating gives us

|Tout − T(t)| = e−Ke−kt

or, after dropping the absolute value signs, we have that

T(t) = Tout + Ce−kt (2)

where C = ±e−K is now the arbitrary constant. The solution formula (2) is
called the general solution of ODE (1).

✓ How does the temperature T(t) in (2) behave as t → +∞? Why can the
constant C be positive or negative?

Given an initial condition, we can determine C uniquely and identify a
single solution from the general solution (2). If we take T(0) = T0, then since
T(0) = Tout + C we see that C = T0 − Tout and we get the unique solution

T(t) = Tout + (T0 − Tout)e
−kt (3)

The constant of proportionality, k, in ODE (1) determines the rate at
which the body cools. It can be evaluated in a number of ways, for exam-
ple, by measuring the body’s temperature at two different times and using
formula (3) to solve for T0 and k. Figure 3.1 shows temperature curves corre-
sponding to Tout = 70◦F, T0 = 212◦F, and five values of k.
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Figure 3.1: The cooling coefficient k ranges from 0.03 to 0.3 min−1 for eggs
of different sizes. Which is the k = 0.03 egg?
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✓ An object is initially at 212◦F and cools to 190◦F after 5 minutes in a
room that is at 72◦F. Find the coefficient of cooling, k, and determine how
long it will take to cool to 100◦F.

Finding the general solution formula (2) for ODE (1) was straightforward.
However, the vast majority of ODEs are not so simple to solve and we have
to use numerical methods. To demonstrate the accuracy of such methods,☞ ODE Architect helps out

again. you can compare the numerical solutions from ODE Architect with a known
solution formula.

✓ How long will it take for a 212◦F egg to cool to 190◦F in a 72◦F room
if k = 0.03419 min−1? Use ODE Architect and formula (3) and compare the
results.

◆ Time-Dependent Outside Temperature

When considering the cooling of an egg, ODE (1) is separable because Tout

is constant in this instance. Let’s consider what happens when the outside
temperature changes with time.

We can still use Newton’s law of cooling, so that if T(t) is the egg’s
temperature and Tout(t) is the room’s temperature, then

dT
dt

= k(Tout(t) − T ) (4)

Note that ODE (4) is not separable (because Tout varies with time) but it is
linear, so we can find its general solution as follows. Rearrange the terms to
give the linear ODE in standard form:

dT
dt

+ kT = kTout(t)

Multiply both sides by ekt, so that

ekt

(
dT
dt

+ kT

)
= kTout(t)ekt (5)

Since the left-hand side of ODE (5) is (d/dt)(ektT(t)), it can be rewritten:

d
dt

(
ektT

) = kTout(t)ekt (6)

Integrate both sides of ODE (6) we have that

ektT =
∫

kTout(t)ektdt + C

where C is an arbitrary constant. The magic factor µ(t) = ekt that enabled us
to do this is called an integrating factor. So ODE (4) has the general solution☞ Every ODE text discusses

integrating factors and first-order
linear ODEs. T(t) = e−kt

(∫
kTout(t)ektdt + C

)
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Figure 3.2: Eggs at initial temperatures of 180, 150, 120, and 90◦F cool in a
room whose temperature oscillates sinusoidally about 70◦F for k = 0.03 min−1.
Do the initial temperatures matter in the long term?

Finally, letting T(0) = T0 and integrating from 0 to t, we get the solution

T(t) = e−kt

(∫ t

0
kTout(s)eks ds + T0

)
(7)

It may be possible to evaluate the integral (7) analytically, but it is easier
to use ODE Architect right from the start. See Figure 3.2 for egg temperatures
in a room whose temperature oscillates between hot and cold.

✓ Show that if Tout is a constant, then formula (7) reduces to formula (3).

✓ Use equation (7) to find a formula for T(t) if☞ You may find a computer
algebra system or a table of
integrals helpful! Tout(t) = 82 − 10 sin

(
2π(t + 3)

24

)

Use a table of integrals to carry out the integration.

◆ Air Conditioning a Room

Now let’s build a model that describes a room cooled by an air conditioner.
Without air conditioning, we can model the change in temperature using
ODE (1). When the air conditioner is running, its coils remove heat energy at
a rate proportional to the difference between Tr, the room temperature, and the
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temperature Tac of the coils. So, using Newton’s law of cooling for the tem-
perature change due to both the air outside the room and the air conditioner
coils, our model ODE is

☞ Newton’s law of cooling
(twice)!

dTr

dt
= k(Tout − Tr) + kac(Tac − Tr)

where Tout is the temperature of the outside air and k and kac are the appropri-
ate cooling coefficients. If the unit is turned off, then kac = 0 and this equation
reduces to ODE (1).

Let’s assume that the initial temperature of the room is 60◦F and the out-
side temperature is a constant 100◦F. The air conditioner operates with a coil
temperature of 40◦F, switches on when the room reaches 80◦F, and switches
off at 70◦F. Initially, the unit is off and the change in the room temperature is
modeled by

☞ Time t is measured in
minutes.

dTr

dt
= 0.03(100 − Tr), Tr(0) = 60 (8)

where we have taken the cooling coefficient k = 0.03 min−1. As we expect,
the temperature in the room will rise as time passes. At some time ton the
room’s temperature will reach 80◦F and the air conditioner will switch on. If
kac = 0.1 min−1, then for t > ton the temperature is modeled by the IVP

dTr

dt
= 0.03(100 − Tr) + 0.1(40 − Tr), Tr(ton) = 80 (9)

which is valid until the room cools to 70◦F at some time to f f . Then for t > tof f

the room temperature satisfies the IVP (8) but with the new initial condition
Tr(tof f ) = 70. Each time the unit turns on or off the ODE alternates between
the two forms given in (8) and (9).

Solving the problem by hand in the manner just described is very tedious.
However, we can use ODE Architect to change the ODE automatically and
without having to find ton and to f f . The key is to define kac to be a function
of temperature by using a step function; here’s how we do it. In the equation

☞ The modeling here is more
advanced than you have seen up
to this point. You may want to
just use the equations and skim
the modeling.

quadrant of ODE Architect write the ODE as

Tr′ = 0.03 ∗ (100 − Tr) + kac ∗ (40 − Tr)

Now define kac as follows:

☞ The Step function is one of
the engineering functions. You
can find them by going to ODE
Architect and clicking on Help,
Topic Search, and Engineering
Functions.

kac = 0.1 ∗ Step(Tr, Tc)

where

Tc = 75 + 5 ∗ B

Here Tc is the control temperature and

B = 2 ∗ Step(Tr′, 0) − 1

Note that B = +1 when T ′
r > 0 (the room is warming) and B = −1 when

T ′
r < 0 (the room is cooling). This causes Tc to change from 80◦F to 70◦F (or
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Figure 3.3: Air conditioning keeps the room temperature in the comfort zone,
70◦F ≤ Tr ≤ 80◦F.

the reverse) depending on whether the room is warming or cooling. Finally,
kac is zero (the air conditioner is off) when Tr < Tc, and kac = 0.1 (the air
conditioner is on) when Tr > Tc.

The overall effect is that the air conditioner switches on only if the room
temperature is above 80◦F, then it runs until the room is cooled to 70◦F, and
then it switches off. The room temperature rises again to 80◦F, and the pro-
cess repeats. The temperature-vs.-time plot is shown in Figure 3.3. The ac-
companying screen image shows that we have set the maximum time step to
0.1 (under the Solver tab). If the internal time steps are not kept small, the
Architect will not correctly notice when the step functions turn on and off.

◆ The Case of the Melting Snowman

It is difficult to model the melting of a snowman because of its complicated
geometry: a large roundish ball of snow with another smaller mound on top.
So let’s simplify the model by treating the snowman as a single spherical ball
of snow. The rate at which the snowman melts is proportional to the rate at
which it gains thermal energy from the surrounding air, and it is given by

dV
dt

= −h
dE
dt

(10)

where V is the ball’s volume, E is thermal energy, and h is a positive constant.
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Our snowman will gain thermal energy only at its surface, where it is
exposed to the warm air. So, it is reasonable to assume that the energy gain
is proportional to both the surface area of the snowman and the temperature
difference between the air and the snow:☞ Remember that the

snowman’s temperature is always
32◦F. dE

dt
= κA(V )(Tout − 32) (11)

where κ is a positive constant, and A(V ) is the surface area of a sphere of
volume V .

If we combine equations (10) and (11) and take k = κh, we obtain☞ This is the snowman’s law
of melting.

dV
dt

= −k A(V )(Tout − 32) (12)

✓ The volume of a sphere of radius r is V = 4
3πr3 and its surface area is

A = 4πr2. Eliminate r between these two formulas to express A as a function
of V . (You will need this soon.)

Note that ODE (12) is separable even when the outside temperature Tout

is a function of time. Separating the variables and integrating we find the
formula ∫

1
A(V )

dV = −
∫

k(Tout(t) − 32) dt + C (13)

which defines V implicitly as a function of t. We can find the constant of
integration C from the volume of the snowman at a specific time. However,
expressions for the integrals in formula (13) may be hard to find. Once again
ODE Architect comes to the rescue and solves ODE (12) numerically, given
formulas for A(V ), Tout(t), and the initial volume.

✓ If k = 0.1451 ft/(hr ◦F), the original volume of the snowman is 10 ft3, and
the outside temperature is 40◦F, how many hours does it take the snowman’s
volume to shrink to 5 ft3?

References Nagle, R.K., and Saff, E.B., Fundamentals of Differential Equations, 3rd ed.
(1993: Addison-Wesley)

Farlow, S.J., An Introduction to Differential Equations and their Applications,
(1994: McGraw-Hill)
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 3.1. Cooling Bodies

1. Too hot to handle.
When eating an egg, you don’t want it to be too hot! If an egg with an initial
temperature of 15◦C is boiled and reaches 95◦C after 5 minutes, how long will
you have to wait until it cools to 70◦C?

2. A dead body, methinks.
In forensic science, it is important to be able to estimate the time of death if
the circumstances are suspicious. Assume that a corpse cools according to
Newton’s law of cooling. Suppose the victim has a temperature of 72◦F when
it is found in a 40◦F walk-in refrigerator. However, it has cooled to 66.8◦F
two hours later when the forensic pathologist arrives. Estimate the time of
death.1

1From “Estimating the Time of Death” by T.K. Marshall and F.E. Hoare, Journal of Forensic
Sciences, Jan. 1962.
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3. In hot water.
Heat a pan of water to 120◦F and measure its temperature at five-minute in-
tervals as it cools. Plot a graph of temperature vs. time. For various values
of the constant k in Newton’s law of cooling, use ODE Architect to solve the
rate equation for the water temperature. What value of k gives you a graph
that most closely fits your experimental data?

4. More hot water.
In Problem 3 you may have found it difficult to find a suitable value of k. Here
is the preferred way to determine k. The solution to ODE (1) is

T(t) = Tout + (T0 − Tout)e
−kt

where in this context Tout is the room temperature. We can measure Tout and
the initial temperature, T0. Rearranging and taking the natural logarithm of
both sides gives

ln |T(t) − Tout| = ln |T0 − Tout| − kt

Using the data of Problem 3, plot ln |T(t) − Tout| against t. What would you
expect the graph to look like? Use your graph to estimate k, then use ODE
Architect to check your results.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 3.2. Keeping Your Cool

1. On again, off again.
When a room is cooled by an air conditioner, the unit switches on and off
periodically, causing the temperature in the room to oscillate. How does the
period of oscillation depend on the following factors?

• The upper and lower settings of the control temperature

• The outside temperature

• The coil temperature, Tac
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2. Keeping your cool for less.
The cost of operating an air conditioner depends on how much it runs. Which
is the most economical way of cooling a room over a given time period?

• Set a small difference between the control temperatures, so that the tem-
perature is always close to the average.

• Allow a large difference between the control temperatures so that the
unit switches on and off less frequently.

Make sure the average of the control temperatures is the same in all your tests.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 3.3. The Return of the Melting Snowman

1. The half-life of a snowman.
Use ODE Architect to plot volume vs. time for several different initial snow-
man volumes between 5 and 25 ft3, assuming that k = 0.1451 ft/(hr ◦F) and
Tout = 40◦F. For each initial volume Use the Explore feature of ODE Archi-
tect to find the time it takes the snowman to melt to half of its original size and
make a plot of this “half-life” vs. initial volume. Any conclusions? [To access
the Explore feature, click on Solutions on the menu bar and choose Explore.
This will bring up a dialog box and a pair of crosshairs in the graphics win-
dow. Move the crosshairs to the appropriate point on the solution curve and
read the coordinates of that point from the dialog box. Note that the Index
entry gives the corresponding line in the Data table.]

2. Sensitivity to outside temperature.
Now fix the snowman’s initial volume at 10 ft3 and use ODE Architect to plot
a graph of volume vs. time for several different outside temperatures between
35◦F and 45◦F, with k = 0.1451 ft/(hr ◦F). Find the time it takes the snowman
to melt to 5 ft3 for each outside temperature used and plot that time against
temperature. Describe the shape of the graph.
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3. Other snowmen.
In developing our snowman model, we assumed that the snowman could be
modeled as a sphere. Sometimes snowmen are built by rolling the snow in
a way that makes the body cylindrical. How would you model a cylindrical
snowman? Which type of snowman melts faster, given the same initial volume
and air temperature?
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