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Processes such as population dynamics that evolve in discrete time steps are best
modeled using discrete dynamical systems. These take the form x,.; = f(Xn),
where the variable x, is the state of the system at ““time” nand x,.; is the state of
the system at time n + 1. Discrete dynamical systems are widely used in ecology,
economics, physics and many other disciplines. In this section we present the
basic techniques and phenomena associated with discrete dynamical systems.

Iteration; fixed point; periodic point; cobweb and stairstep diagrams; stability;
sinks; sources; bifurcation diagrams; logisitic maps; chaos; sensitive dependence
on initial conditions; Julia sets; Mandelbrot sets

Chapter 6 for more on sinks and sources in differential equations; Chapter 12 for
Poincaré sections.
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D The functionf (x) = Axis
denotedL,, and soL, (X) = AX.

D The functionAx(1 — x) is
denoted byg; (x).

D The superscript reminds
us that this is just the
composition off with itself; f is
not being raised to a power.

Discrete dynamical systenasise in a large variety of applications. For
example, the population of a species that reproduces on an annual basis is
best modeled using discrete systems. Discrete systems also play an impor-
tant role in understanding maopntinuouslynamical systems. For example,
points calculated by a numerical ODE solver form a discrete dynamical sys-
tem that approximates the solution of an initial value problem for an ODE.
The Poincag’section described in Chapter 12 is another example of a discrete
dynamical system that gives information about a system of ODEs.

A discretedynamical system is defined by tieration of a function f,
and takes the form

Xnp1= f(X), n=0, xogiven 1)

Here are another two examples. In population dynamics, some populations
are modeled usingproportional growthmodel

Xnp1 = Li(Xn) =A%y, Nn>=0, Xogiven 2)

wherex, is the population density at generatiorand . is a positive num-
ber that measures population growth from generation to generation. Another
common model is thiogistic growthmodel:

Xn+1 = gk(xn) = )»Xn(l - Xn)a n=> oa Xo given

Let’s return to the general discrete system (1). Starting with an initial
conditionxg, we can generatesequenceising this rule for iteration: Given
Xo, We getx; = f(Xg) by evaluating the functiorf at xo. We then compute
xo = f(X1), X3 = f(x2), and so on, generating a sequence of pofr}s.
Eachx, is then-fold compositiorof f atxg since

X = f(f(x)) = F2(X0)
xg = f(f(f(%))) = (%)

Xn = F"(X0)

(Some authors omit the superscrigt

The infinite sequence of iterat€(xo) = {X}32, is called theorbit of xg
under f, and the functionf is often referred to as map For example, if
we takei = 1/2 and the initial conditiorxg = 1 in the proportional growth
model (2), we get the orbit for the mdp

Xo=1 x1=1/2, x=1/4,...

Refer to Screen 1.2 of Module 13 for four representations of the orbit
of an iteration: as aequencgxg, X3 = f(Xg), X2 = f(X1),...}; anumerical
list whose columns are labeledx,, f(x,); atime seriewherex, is plotted
against “time”n; and astairstep/cobweb diagrafor graphical analysis.

The chapter cover figure shows a stairstep diagram for the mqdet
0.7x, + 100. Figures 13.1 and 13.2 show cobweb diagrams for the logistic
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model X1 = AX,(1 — Xp), with A = 3.51 and 39, respectively. In all of
these figures, the diagonal ling,1 = X, is also plotted. The stairstep and
cobweb diagrams are constructed by selecting a valug,fon the horizontal
axis, moving up to the graph of the iterated function to obtajrhorizontally
over to the diagonal then up (or down) to the graph of the function to obtain
X2, and so on. These diagrams are used to guide the eye in movingjrtam
Xn+1-

[ Equilibrium States

As with autonomous ODEs, it is useful to determine the equilibrium states for
a discrete dynamical system. First we need some definitions:

[[] Afixed point of a discrete e A point x* is afixed pointof f if f(x*) = x*. A fixed point is easy to
dynamical system is the analogue spot in a stairstep or cobweb diagram even before the steps and webs
ofan equilibrium point for a are plotted: the fixed points df are where the graph df intersects the

system of ODEs. .
diagonal.

e A point x* is a periodic point of period nof f if f°"(x*) = x* and
fok(x*) #£ x* for k < n. A fixed point is a periodic point of period 1.

Both the proportional and logistic growth models have the fixed poiat0.
For certain values of the logistic model has periodic points; Figure 13.1
suggests that the model has a period-4 orbit-i# 3.51.

O “Check” your understanding by showing that the logistic model has a
second fixed poink* = (A — 1)/A. Does the proportional growth model for
A > 0 have any periodic points that are not fixed?

[[] This use of the words A fixed pointx* of f is said to bestable(or asink or anattractor) if every
“stable” and “unstable” for points point p in some neighborhood of* approaches* under iteration byf, that
Z‘.”d orbits of a discrete system ¢ ¢ fon( ) 5 x* asn — +o0o. The set ofall points such thaf*"(p) — x*
iffers from the way the words . . . . . w
are used for equilibrium points of @SN — +00 is thebasin of attractiorof p. A fixed pointx* is unstable(or
an ODE. For example, a saddle a sourceor repeller) if every point in some neighborhood &f moves out of
point of an ODE is unstable, butathe neighborhood under iteration Hy If x* is a periodn point of f, then
saddle point of a discrete system yho ot ofx* js said to bestableif x* is stable as a fixed point of the map
is neither stable or unstable. i . . . . e
fen. The orbit isunstablaf x* is unstable as a fixed point df". Stability is

determined by théerivativeof the mapf, as the following tests show:

e A fixed pointx* is stable if| f'(x*)| < 1, and unstable iff’(x*)| > 1.

e The orbit of a periodic point* of periodn is stable if| (f°")'(x*)| < 1,
and unstable if(f°")’ (x*)| > 1.

Stable periodic orbits arattracting because nearby orbits approach them,
while unstable periodic orbits arepellingbecause nearby orbits move away
from them.
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Iteration Map
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Figure 13.1: The cobweb diagram for the logistic map, X,+1 = 3.51%,(1 — X,),
suggests that iterates of x, = 0.72 approach a stable orbit of period 4.

O Is the fixed point in the chapter cover figure stable? Is the period-4 orbit
in Figure 13.1 stable? How about the two fixed points in that figue@fes-
tion: Use the Discrete Tool as an aid in answering these questions.]

[0 Linear versus Nonlinear Dynamics

D Refer to the first
submodule of Module 13 for
examples.

The solutions of linear and of nonlinear ODEs are compared and contrasted
in Chapter/Modules 6 and 7. Now we will do the same comparison for linear
and nonlinear maps of the real line into itself.

Let’s look at the iteration of linear functions such as the proportional
growth modelx,,1 = L; (X,), which has a fixed point at* = 0. This fixed
point is stable ifiA| < 1, so the orbit of every initial population tends to 0 as
n— oo. If A =1, thenx,,1 = X,, and hence every pointis a fixed point. The
fixed point atx* = 0 is unstable ifA| > 1, and all initial populations tend to
oo asn — oo. If L = —1 thenx* = 0 is the only fixed point and every other
point is of period 2 since&n, 1 = —Xn.

The iteration of any linear functiorf (x) = ax+ b (with slopea # 1)
behaves much like the proportional growth model. Fixed points are found by
solvingax* + b = x*, and their stability is governed by the magnitudeof

The iteration of nonlinear functions can be much more complex than that
of linear functions. In particular, nonlinear functions can exhibit chaotic be-
havior, as well as periodic behavior. To illustrate the types of behavior typical
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Iteration Map
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Figure 13.2: The cobweb diagram of the logistic map X,.1 = 3.9%,(1 — X,) sug-
gests that iterates of xo = 0.8361either approach an attracting periodic orbit
of very high period, or else wander chaotically.

to nonlinear functions we consider; in the second submodule of Module 13,
the one-parameter family ¢dgistic functions

9.(¥) = AX(1 = X)

Figure 13.2 shows how complex an orbit of a logistic map may be for certain
values of.

[J Stability of a Discrete Dynamical System

Now we turn our attention to the stability of an entire dynamsyatenrather

than just that of a fixed point. One of the most important ideas of dynamical
systems (discrete or continuous) is thathgperbolicity Hyperbolic points

are stable to small changes in the parameters of a dynamical system. This
does not mean that a perturbation (a small change) of the function leaves the
fixed or periodic point unchanged. It simply means that the perturbed function
will also have a fixed point or periodic point “nearby,” and that this point has
the stability properties of the corresponding point of the unperturbed function.
For example, at = 2 the functiorg,(x) has an attracting fixed poirt = 0.5.

For values ofs near 2, the functiom; (x) also has an attracting fixed point

xX* = (A —1)/Ar. For example, ifA = 2.1 then the attracting fixed point is

x* = 0.524. Even though the fixed point moved a little Jaincreased, the
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[0 Bifurcations

fixed point still exists and it is still attracting. The following theorem provides
a way of determining whether fixed points and periodic orbits are hyperbolic.

THEOREM 13.1 Given a discrete dynamical systegn.1 = 5 (Xn),
a fixed pointx* of f; (x) is hyperbolic if| f; (x*)| # 1. Similarly, a peri-
odic pointx* of periodn (and its orbit) is hyperbolicif( ") (x*)| # 1.

Because the number and type of periodic points do not change at pa-
rameter values wherg, (x) has hyperbolic points, we say that the qualitative
structure of the dynamical system remains unchanged. On the other hand,
this theorem also implies that changes in the qualitative structure of a family
of discrete dynamical systems can occur only when a fixed or periodic point
is not hyperbolic. We see this in the proportional growth modglh = Ax;,
wheni =1and: = —1. ForA =1—¢[and hencd| (1) =i =1—¢] the
fixed pointx = 0 is attracting. But foi. = 1+ ¢ the fixed point is repelling.
Thus, as\ passes through the value 1, the stability of the fixed point changes
from attracting to repelling and the qualitative structure of the dynamical sys-
tem changes.

A change in the qualitative structure of a discrete dynamical system, such as
a change in the stability of a fixed point, is known asifarcation Two other
types of bifurcations can also occur whé&nis nonlinear.

The first, known as aaddle-nodéifurcation, occurs wher* is a peri-
odic point of perioch and (")’ (x*) = 1. In a saddle-node bifurcation, the
periodic pointx* splits into a pair of periodic points, both of periadone of
which is attracting and the other repelling. A saddle-node bifurcation occurs
in the logistic growth familyg; (x) whena = 1. At this value the fixed point
x* = 0 (which is attracting foi. < 1) splits into a pair of fixed points¢- = 0
(repelling fora > 1), andx* = (A — 1)/A (attracting forr > 1). This type of
bifurcation is sometimes called &tchange of stabilitpifurcation.

The second important type of bifurcation is calleeriod-doublingand
occurs wherx* is a periodic point of periogrand ( f{")'(x*) = —1. In this
bifurcation the attracting period point becomes repelling and an attracting
period-2h orbit is spawned. (Note that the stability can be reversed.) This
occurs in the logistic family, (x) whenx = 3. At this parameter value, the
attracting fixed poink* = (A — 1) /A becomes repelling and a stable period-2
orbit emerges with one point on each sidexbf= (A — 1) /. Since the logistic
equations model population growth, this says that the population converges to
an equilibrium for growth rate constaritdess than 3. However, for values of
A greater than 3, the population oscillates through a sequence of values.

The bifurcations that occur in a one parameter family of discrete dynam-
ical systems can be summarized ibiturcation diagram For each value of
the parameter (on the horizontal axis) the diagram shows the long-term be-
havior under iteration of a “typical” initial point. For example, if you see
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Bifurcation Diagram
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Figure 13.3: Part of the bifurcation diagram for the logistic map.

a single point in the diagram above a particular parameter value, that point
corresponds to an attracting fixed point. The spot in the diagram where you
see an arc of attracting fixed points split into two arcs corresponds to a bifur-
cation from an attracting fixed point for an attracting orbit of period 2 (i.e.,
period doubling). If the diagram shows a multitude of points above a given
parameter value, then either you are seeing an attracting periodic orbit of a
very high period, or else you are seeing chaotic wandering. It should be noted
that when constructing the bifurcation diagram for each parameter value and
initial point, the first 50 or so iterates are omitted so that only the long-term
behavior is visible in the diagram. See Figure 13.3 and Screen 2.4 in Mod-
ule 13 for the bifurcation diagram of the logistic map.

The stable arcs in these diagrams are usually straightforward to generate
numerically. We constructed a bifurcation diagram on an interval [Amin, Amex]
for the logistic population model xn11 = g, (Xn) using the following proce-
dure.

1. FiX Aminy Amax» Aincs Nmin, Nmax- HEre Ainc is the step size between suc-
cessive values of A while npin and npya are bounds on the number of
iterates used to construct the diagram; they control the accuracy of the
diagram. Typical valuesare Ny, = 50 and Ny = 150.

2. Let )\. = )\.m|n

3. Taking Xo = 0.5 for example, compute the first nnin iterates of g with-
out plotting anything. This eliminates transient behavior.
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4. For Nmin < N < Nmax, plot the points (A, g;"(0.5)). If the orbit of 0.5
converges to a periodic orbit, only points near this orbit are plotted. If
the orbit of 0.5isn’t periodic, then the points above A seem to be almost
randomly distributed.

5. Let )\, = )\. +)\,inc.
6. If A < Amax, g0 back to Step 3 and repeat the process.

O Gotothe one-dimensional tab of the Discrete Tool. Use the default val-
ues, but set the value of ¢ a 1 (c in the tool plays the role of A in Chap-
ter/Module 13). Click on the bifurcation diagram. Keep your finger on the
up-arrow for ¢ and describe what is happening. Any attracting periodic or-
bits? For what values of ¢ do these orbits occur? What are the periods?

[0 Periodic and Chaotic Dynamics

One of the most celebrated theorems of discrete dynamical systems is often
paraphrased “Period 3 Implies Chaos.” This theorem, originally proven by
Sarkovskii and independently discovered by Li and Yorke!, is a remarkable
result in that it requires relatively little information about the dynamical sys-
tem and yet it returns a treasure trove of information.

THEOREM 13.2 If f isacontinuousfunction on thereal line and if
there exists a point of period 3, then there exist points of every period.

For the logistic population model there exists an attracting period-3 orbit
at A = +/8+ 1 3.83, and most initial conditions in the unit interval con-
vergeto this orbit (see Figure 13.4). In terms of our model, most populations
tend to oscillate between the three different values of the period-3 orbit. The-
orem 13.2 states that even more is going on at A = +/8 + 1 than meets the
eye. If we pick any positive integer n, there exists a point p such that nis
the smallest positive integer alowing g;"(p) = p. Thus, for example, there
exists a point that returns to itself in 963 iterates. The reason we don't “see”
this periodic orbit (or, indeed, any periodic orbit, except that of period 3) is
that it is unstable, so no iterate can approach it. But orbits of every period are
indeed present if A = v/8+ 1.

1James Yorkeand T.Y. Li are contemporary mathematicians who published their result in 1975 (see
References). They were the first to apply the word “chaos’ to the strange behavior of the iterates of
functionssuch asg, . A.N. Sarkovskii published astronger result in 1964, in Russian, in the Ukrainian
Mathematical Journalbut it remained unknown in the West until after the paper by Yorke and Li had
appeared.
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Figure 13.4: At » = /8 + 1~ 3.83 the logistic map g, = Ax(1— x) has an attract-
ing orbit of period 3; the points g, X3, ..., Xs9 have been suppressed in this
graph.

[0 What is Chaos?

|:| A set U of real numbersis
openif every point p of U has
the property that al pointsin
someinterval (p—a, p+a) are
asoinU.

So, you're probably asking, what is chaos? The definition of chaos is a bit
dlippery. In fact, mathematicians are still arguing about a proper definition.
But to get the idea acrosswe'll use one due to Devaney.

Let Sbe a set such that if x liesin S, then f°"(x) belongsto Sfor all
positive integers n. The set Sis called invariant. If you start in an invariant
set, you can't get out! Now let’s define what we mean by chaosin aninvariant
st S

A map f : S— Sischaoticif:

1. periodic pointsaredensein S
2. f displays sensitive dependenceon initial conditionsin S; and
3. f istopologically transitivein S.

The first condition of this definition is relatively explained like this: A
set A is densein another set B if for every point x in B and every open set
U containing x there exists points of A that are also in U. Therefore, condi-
tion 1 saysthat periodic points are almost everywherein S, This meansthat S
contains many periodic points; Theorem 13.1 gives a condition guaranteeing
infinitely many of these points.
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D Module 13 has examples.

In the second condition, sensitive dependence on initial conditioneans
that pointsthat areinitially closeto one another eventually get moved far apart
under iteration by f.

Finally, f istopologically transitive(or mixing) if given any pair of open
setsU and V in S, some iterate of f takes one or more points of U into V.
This means that points of open sets get spread throughout the set S.

The most significant item on this list for applied problems is sensitive
dependence on initial conditions. Let's consider the logistic growth model
at a parameter value where the dynamics are chaotic. Sensitive dependence
impliesthat no matter how close two populations may betoday, therewill bea
time in the future when the populations differ significantly. So environmental
disturbancesthat cause small population changeswill eventually lead to large
changes, if chaotic dynamicsexist.

Chaotic dynamics occur in awide range of models. Although the defini-
tions above are given in terms of asingle scalar dynamical system, everything
extends to higher dimensions, and many of the applications are two or three
dimensional. In addition to models of population dynamics, chaos has been
observed in models of the weather, electrical circuits, fluid dynamics, plane-
tary motion, and many other phenomena. The relatively recent understanding
of chaos has shed new light on the complexity and beauty of the world we
inhabit.

[0 Complex Numbers and Functions

Imaginary axis 7

|
|
|
|
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=X+1iy
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Real axis

D Euler's formulais also
used in Chapter 4.

Probably the most popular type of discrete dynamical system is a complex
dynamical systerwhere the variables are complex numbers instead of real
numbers. The intricate fractal structures common to images generated using
complex dynamics have appeared everywherefrom calendarsto art showsand
have inspired both artists and scientists alike. Many of the fundamental ideas
of complex dynamics are identical to those of real dynamics and have been
discussed in previous sections. In what follows, we will highlight both the
similarities and differences between real and complex dynamics.

Recdll that complex numbers arise when factoring quadratic polynomials
with negative discriminant. Because the discriminant is negative we must
take the square root of a negative real number, which we do by defining i to
be v/—1. We then write the complex numbeas z= x + iy. We say that x is
the real part of zand y is the imaginary part of z The complex number zis
represented graphically on the complex plane by the point having coordinates
(X, y). It isoften useful to represent complex numbersin polar coordinates by
letting x =r cosf and y =r sind so that

z=r(cos +ising) = re'’

The remarkable relationship cos6 + i sind = € between polar coordinates
and exponential functions is known as Euler's Formula The number r =
VX2 + y? is the distance from the origin to the point z in the complex plane
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and is sometimes called the modulusof z, and it is denoted by r = |z|. The
angle 6 iscaled the argumenif z. Note that the usual properties of exponen-
tial functions hold in the complex plane. Thus, given two complex numbers
z=re'’ and w = sé?, their product is

zw = rsd @9

A complex function ¢z) takes a complex number z as its argument and
returns a complex number w = f(z). Differentiation proceeds as in the real
case; for example, (%)’ = 3z°. Unlike functions of one real variable, we
cannot graph a complex function since both the domain and range are two-
dimensional.

[I Iterating a Complex Function

|:| Any period-n point is aso
aperiodic point of all periods
which are positive integer
multiples of n.

Iteration of a complex function isidentical to the iteration of areal function.
Givenaninitial z-value z,, iteration generates a sequence of complex numbers
2 = f(z), z2 = f(z), etc. Fixed and periodic points are defined in the same
way asfor real functions, as are stability and instability. Here are the previous
criteriafor stability, but now applied to complex functions.

e A fixed point z* isstableif | f'(Z")| < 1, and unstableif | f'(z")| > 1.

e A period-n point z* (and its orhit) is stableif |(f°")'(z")| < 1, and un-
stableif |(f")(z9)| > 1.

Let's consider a simple example to illustrate these ideas. Let f(z) = 2.
Then z* = 0 is an attracting fixed point since f(0) =0and | f'(0)| =0. If z
isany point such that |z] < 1, then the sequence { f°"(2)}7°, convergesto 0 as
n — oo. On the other hand, if |z| > 1, then the sequence { f°"(2)}72, goesto
infinity asn — oco. To see what happensto values of z having modulus equal
to 1, let'swritez= €’. Then f(z) = €??, which also hasmodulus 1. Thusall
iterates of points on the unit circle |z| = 1 stay on the unit circle. The point
Zz* = lisarepdling fixed point since f (1) = 1and | f'(1)| = 2. The period-2
points are found by solving f(f(z)) = z* = z. We can rewrite this equation
as

2Z2-1)=0
One solution to this equation is z* = 0, corresponding to the attracting fixed
point, and another solution is z* = 1, corresponding to the repelling fixed
point. Notice that the fixed points of f(z) remain fixed pointsof f(f(z)), or
equivalently, are also period-2 points of f (z). To find the other two solutions,
we write z = € to get the equation
e3i9 =1

which we need to solve for 6. Since we are working in polar coordinates, we
notethat 1 = €2" where nisan integer. Thisimpliesthat 39 = 2nx and from
this we find a second pair of period-2 pointsat z= €*/3 and z = €*"/3, Both
of these are repelling.
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Julia Set
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Figure 13.5: The filled Julia set for f(z) = 22 + ¢, where ¢ = 0.4012 — 0.3245i

0  Show that €/ and *'/3 are repelling period-2 points of f = z2. Show
that f°"(z) > 0asn— oo if |7l < 1, andthat | f°"(2)| — o< if |Z] > 1. What
isthe “basin of attraction” of the fixed point z= 0?

[0 Julia Sets, the Mandelbrot Set, and Cantor Dust

|:| The closureof aset A
consists of the points of A
together with all points that are
limits of sequences of the points
of A

The set of repelling periodic points of the function f = Z? is dense on the unit
circle, although we don't show that here. This leads usto the definition of the
Julia set.

DEFINITION Thefilled Julia set Kof acomplex-valued function f is
the set of al points whose iterates remain bounded. The Julia set Jof
f isthe closure of the set of repelling periodic points.

For f = 7°, thefilled Juliaset K of f isthe set of all complex numbers z
with |z] < 1, whilethe Juliaset J of f istheunit circle |zl = 1. Thisisavery
simple example of a Julia set. In general, Julia sets are highly complicated
objects having avery intricate fractal structure. For example, see Figure 13.5
and Screens 3.3 and 3.4 of Module 13.

In the above example, the Julia set J divides those points that iterate to
infinity (points outsidethe unit circle) and those that convergeto the attracting
fixed point (points inside the unit circle). This division of the domain by
the Julia set is often the case in complex dynamics and provides a way of
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|:| In the Discrete Tool of
ODE Architect, the coloring is
reversed. Points in the Julia set
are colored black and points
whose orbits diverge past the
predetermined bound are colored
with various colors according to
their divergence rates (e.g., red is

the fastest, dark blue the slowest).

|:| A complex function f is
analyticif its derivatives of every
order exist. A point Zisacritical
pointof fif f'(2) =0.

numerically computing the filled Julia set of a given function f. Assign a
complex number to each screen pixel. Then use each pixel (i.e., complex
number) as an initial condition and iterate to determine whether the orbit of
that point exceeds some predetermined bound (for example |z = 50). If it
does, we say the orbit diverges and we color the point black. If not, we color
the point red to indicateit isin the filled Julia set.

Earlier in this chapter we saw the importance of attracting periodic orbits
in building a bifurcation diagram for areal map f. Although we didn't men-
tionit then, we can homein on an attracting periodic orbit of f (if thereisone)
by starting at xo = Xif f’(x) iszeroat X and nowhereelse. Complex functions
f(2) for which f’(Z) = 0 at exactly one point Z have the same property asthe
following theorem shows.

THEOREM 13.3 Let f bean analytic complex-valued function with
a unique critical point z. If f has an attracting periodic orbit then, the
forward orbit of Z convergesto this orbit.

Let’slook at some of theimplications of thistheorem with the family of func-
tions f.(z) = 2 + c wherec = a+ ib isacomplex parameter. For each value
of c the only critical point is Z= 0. To find an attracting periodic orbit for a
given value of ¢ we need to compute the orbit

{0,c,c®+c,...}

and see if the orbit converges or not. If it does, we found the attracting pe-
riodic orbit; if not, there doesn’t exist one. Let's see what happens when we
set ¢ = 1to givethefunction f1(z) = z> + 1. The orbit of the critical point is
{0,1,2,5, 26, ...}, which goesto infinity. Thus, f; hasnoattracting periodic
orbit and the Julia set does not divide points that converge to a periodic orbit
from pointsthat iterate to infinity. Infact, it can be shown that this Juliaset is
totally disconnected; it is sometimes referred to as Cantor dust Click on out-
lying points on the edge of the Mandelbrot (defined below) set in Screen 3.5
of Module 13 and you will generate Cantor dust in the upper graphics screen.

This leads to another question. If some functions in the family f; have
connected Julia sets (such as fo = %) and other functions in the family have
totally disconnected Julia sets (such as f1), what set of pointsin the ¢ plane
separates these distinctive features? This set is the boundaryof the Mandel-
brot set. The Mandelbrot set Mof the function f.(z) = Z2+ cisdefined asthe
set of all complex numbers c such that the orbit { fg"(0)¢2 ;} remains bounded,
thatis, | f°"(0)| < K for some positive number K and n.

This definition leads us to an algorithm for computing the Mandelbrot
set M. Assign to each pixel a complex number c. Choose a maximum num-
ber of iterations N and determine whether | fZ"(0)| < 2 for al n < N (it can
be proven that if | f¢"(0)| > 2 for some n, then the orbit goes to infinity).
If so, then color this point green to indicate that it is in the Mandelbrot set.
Otherwise, color this point black. It is this computation that gives the won-
derfully intricate Mandelbrot set; see Figure 13.6 and Screens 3.4 and 3.5 of
Module 13.
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Mandelbrat Set

Imige)

Relc)

Figure 13.6: The Mandelbrot set; the cross-hairs are set on the point 0.4012 —
0.3245i, which gives the Julia set shown in Figure 13.5.

The Mandelbrot set actually contains much more information than is de-
scribed here. It is, in fact, the bifurcation diagram for the family of functions
f.(z) = 22+ c. Each “blob” of the set correspondsto an attracting periodic or-
bit of aparticular period. Vaues of ¢ in the big cardioid shown on Screen 3.4
of Module 13 give attracting period-1 orbits for f.. Values of ¢ in the circle
immediately to the left of this cardioid give attracting period-2 orbits for f..
Other “blobs’ give other attracting periodic behaviors.

Although we have only defined the Mandel brot set for the specific family
f. = 22+ ¢, it can be defined in an anlagous way for other families of complex
functions (see the Discrete Tool). Onefinal note on Julia sets and the Mandel -
brot set. You've probably seen intricately colored versions of these objectson
posters or elsewhere. The coloring is usually determined by how “fast” orbits
tend to infinity. The color schemeis, of course, up to the programmer.

Module 13 introduces and lets you play with three important discrete dy-
namical systems—Ilinear, logistic, and athird that uses complex numbers. Ex-
plorations 13.1-13.4 extend theseideas and introduce other mapswith curious
behavior under iteration.
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Exploration 13.1. One-Dimensional Maps and the Discrete Tool

1. Goto the Discrete Tool and enter the proportional growth model Xp1 = Cxn,
where c is the parameter. For the range 0 < n < 30 and the initial condition
Xo = 0.5, explore and describe what happensto the iteration map, time series,
and bifurcation diagram as the parameter is increased from —2 to 2. For
what values of c is there a sudden change in the behavior of the iterates (the
bifurcation values of ¢)? For what values of c arethere 1, 2, or infinitely many
fixed or periodic points? Which of there points are attractors? Repellers?

2. GototheDiscrete Tool and explore and describe what happensto theiteration
map, the time series, and the bifurcation diagram as the parameter c for the
logistic map gc(X) = cx(1 — X) isincremented from 1 to 4. Use the range
50 < n < 150to avoid aninitial wandering, and the initial condition xo = 0.5.
Describewhat all three graphson thetool screenlook like at values of c where
there is a periodic orbit? What is the period? Go as far forward as you can
with the period doubling sequence of values of c: 3, 3.434, ... . What are
the corresponding periods? [SuggestionZoom on the bifurcation diagram.]
Repeat with the sequence 3.83, 3.842, ... .
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In the Discrete Tool enter the tent map T on theinterval 0 < x < 1:
2CX, 0<x<05
2c(l1-x), 05<x<1

where the parameter c is allowed to range from 0 to 1. Describe and explain
what you see as c isincremented from 0 to 1. [Suggestionuse the Edit option
in the Menu box for the Bifurcation Diagram and set 200 < n < 300 in order
to suppresstheinitia transients.] Any orbits of period 2? Period 3?

Te(X) = ¢c(1— 2abs(x — 0.5)) =
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Exploration 13.2. Circle Maps

Another common type of discrete dynamical system is a circle map, which
maps the perimeter of the unit circle onto itself. These functions arise when
modeling coupled oscillators, such as pendulums or neurons. The simplest
types of circle maps are rotations that take the form

R,(0) = (6 + ) mod 27
where 0 < 0 < 27 and w is a constant.

1. Show that if w = (p/q)7r with p and g positive integers and p/q in lowest
terms, then every point has period q.

2. Show that if w = ar with a anirrational number, then no point on the circle
isperiodic.
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3. What isthelong-term behavior of the orbit of apoint onthe circleif w = arr,
whereaisanirrational number?
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Exploration 13.3. Two-Dimensional Maps and the Discrete Tool

A two-dimensional discrete dynamical system looks like thes:
Xnt1 = fF(Xn, ¥n, ©)
Ynt+1 = 9(Xn, Yn, €)

where f and g are given functions and c is a “place holder” for parameters.
For given values of ¢, X, and Yy, system (3) defines an orbit of points

©)

(X0, Y0),  (X1,¥1), (X2, ¥2),...

in the xy-plane. The two dimensional tab in the Discrete Tool allows you to
explore discrete systems of the form of (3)

1. Open the Discrete Tool and explore the default system (a version of what is
known as the Henon May:

Yni1 = bX

where a and b are parameters. For fixed values of the parameters a and b
find the fixed points. Arethey sinks, sources, or neither? How sensitiveisthe
long-term behavior of an orbit to small changes in the initial point (Xo, Yo)?
What happensif you increment a through a range of values? If you increment
b? Any period doubling sequences? In your judgment, is there any long-term
chaotic wandering? [Suggestion:Keep the values of a and b within small
ranges of their default valuesto avoid instabilities.]

4
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2. Repeat Problem 1 with the following version of the Henon map:
Xni1 = a— X2+ by,
Yn+1 = Xn
Start witha=1.28, b=-0.3, X0 =0, yp=0.
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Exploration 13.4. Julia and Mandelbrot Sets and the Discrete Tool

Note that the color schemes for the Julia and Mandelbrot sets in Module 13
differ from those in the discrete tool.

1. Use the Discrete Tool to explore the Mandelbrot set and Julia sets for the
complex family f. = 2% + c. What happens to the filled Julia sets as you
move ¢ from inside the Mandelbrot set up toward the boundary, then across
the boundary and out beyond the Mandelbrot set? Describe how the Julia sets
change as you “walk” along the edge of the Mandelbrot set.
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2. Repeat Problem 1 for the complex family g. = csinz

3. Repeat Problem 1 for the family h, = c€e~
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