
Id: chapter13.tex,v 1.7 1998-02-27 23:49:05-08 drichard Exp drichard ODE Architect Workbook Page 233 on June 30, 1998 at 3:06

13
C

H
A

P
T

E
R

Discrete Dynamical Systems
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Supply and demand converge to a stable equilibrium.

Overview Processes such as population dynamics that evolve in discrete time steps are best
modeled using discrete dynamical systems. These take the form xn+1 = f (xn),
where the variable xn is the state of the system at “time” n and xn+1 is the state of
the system at time n+ 1. Discrete dynamical systems are widely used in ecology,
economics, physics and many other disciplines. In this section we present the
basic techniques and phenomena associated with discrete dynamical systems.

Key words Iteration; fixed point; periodic point; cobweb and stairstep diagrams; stability;
sinks; sources; bifurcation diagrams; logisitic maps; chaos; sensitive dependence
on initial conditions; Julia sets; Mandelbrot sets

See also Chapter 6 for more on sinks and sources in differential equations; Chapter 12 for
Poincaré sections.
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Discrete dynamical systemsarise in a large variety of applications. For
example, the population of a species that reproduces on an annual basis is
best modeled using discrete systems. Discrete systems also play an impor-
tant role in understanding manycontinuousdynamical systems. For example,
points calculated by a numerical ODE solver form a discrete dynamical sys-
tem that approximates the solution of an initial value problem for an ODE.
The Poincar´e section described in Chapter 12 is another example of a discrete
dynamical system that gives information about a system of ODEs.

A discretedynamical system is defined by theiteration of a function f ,
and takes the form

xn+1 = f (xn), n ≥ 0, x0 given (1)

Here are another two examples. In population dynamics, some populations
are modeled using aproportional growthmodel

☞ The function f (x) = λx is
denotedLλ, and soLλ(x) = λx.

xn+1 = Lλ(xn) = λxn, n ≥ 0, x0 given (2)

wherexn is the population density at generationn andλ is a positive num-
ber that measures population growth from generation to generation. Another
common model is thelogistic growthmodel:

☞ The functionλx(1− x) is
denoted bygλ(x).

xn+1 = gλ(xn) = λxn(1− xn), n ≥ 0, x0 given

Let’s return to the general discrete system (1). Starting with an initial
conditionx0, we can generate asequenceusing this rule for iteration: Given
x0, we getx1 = f (x0) by evaluating the functionf at x0. We then compute
x2 = f (x1), x3 = f (x2), and so on, generating a sequence of points{xn}.
Eachxn is then-fold compositionof f at x0 since☞ The superscript◦ reminds

us that this is just the
composition of f with itself; f is
not being raised to a power.

x2 = f ( f (x0)) = f ◦2(x0)

x3 = f ( f ( f (x0))) = f ◦3(x0)

...

xn = f ◦n(x0)

(Some authors omit the superscript◦.)
The infinite sequence of iteratesO(x0) = {xn}∞n=0 is called theorbit of x0

under f, and the functionf is often referred to as amap. For example, if
we takeλ = 1/2 and the initial conditionx0 = 1 in the proportional growth
model (2), we get the orbit for the mapL:

x0 = 1, x1 = 1/2, x2 = 1/4, . . .

Refer to Screen 1.2 of Module 13 for four representations of the orbit
of an iteration: as asequence{x0, x1 = f (x0), x2 = f (x1), . . . }; a numerical
list whose columns are labeledn, xn, f (xn); a time serieswherexn is plotted
against “time”n; and astairstep/cobweb diagramfor graphical analysis.

The chapter cover figure shows a stairstep diagram for the modelxn+1 =
0.7xn + 100. Figures 13.1 and 13.2 show cobweb diagrams for the logistic
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model xn+1 = λxn(1 − xn), with λ = 3.51 and 3.9, respectively. In all of
these figures, the diagonal linexn+1 = xn is also plotted. The stairstep and
cobweb diagrams are constructed by selecting a value forx0 on the horizontal
axis, moving up to the graph of the iterated function to obtainx1, horizontally
over to the diagonal then up (or down) to the graph of the function to obtain
x2, and so on. These diagrams are used to guide the eye in moving fromxn to
xn+1.

◆ Equilibrium States

As with autonomous ODEs, it is useful to determine the equilibrium states for
a discrete dynamical system. First we need some definitions:

• A point x∗ is afixed pointof f if f (x∗) = x∗. A fixed point is easy to☞ A fixed point of a discrete
dynamical system is the analogue
of an equilibrium point for a
system of ODEs.

spot in a stairstep or cobweb diagram even before the steps and webs
are plotted: the fixed points off are where the graph off intersects the
diagonal.

• A point x∗ is a periodic point of period nof f if f ◦n(x∗) = x∗ and
f ◦k(x∗) �= x∗ for k < n. A fixed point is a periodic point of period 1.

Both the proportional and logistic growth models have the fixed pointx = 0.
For certain values ofλ the logistic model has periodic points; Figure 13.1
suggests that the model has a period-4 orbit ifλ = 3.51.

✓ “Check” your understanding by showing that the logistic model has a
second fixed pointx∗ = (λ − 1)/λ. Does the proportional growth model for
λ > 0 have any periodic points that are not fixed?

A fixed point x∗ of f is said to bestable(or asink, or anattractor) if every☞ This use of the words
“stable” and “unstable” for points
and orbits of a discrete system
differs from the way the words
are used for equilibrium points of
an ODE. For example, a saddle
point of an ODE is unstable, but a
saddle point of a discrete system
is neither stable or unstable.

point p in some neighborhood ofx∗ approachesx∗ under iteration byf , that
is, if f ◦n(p) → x∗ asn → +∞. The set ofall points such thatf ◦n(p) → x∗

asn → +∞ is thebasin of attractionof p. A fixed pointx∗ is unstable(or
a sourceor repeller) if every point in some neighborhood ofx∗ moves out of
the neighborhood under iteration byf . If x∗ is a period-n point of f , then
the orbit ofx∗ is said to bestableif x∗ is stable as a fixed point of the map
f ◦n. The orbit isunstableif x∗ is unstable as a fixed point off ◦n. Stability is
determined by thederivativeof the mapf , as the following tests show:

• A fixed pointx∗ is stable if| f ′(x∗)| < 1, and unstable if| f ′(x∗)| > 1.

• The orbit of a periodic pointx∗ of periodn is stable if|( f ◦n)′(x∗)| < 1,
and unstable if|( f ◦n)′(x∗)| > 1.

Stable periodic orbits areattracting because nearby orbits approach them,
while unstable periodic orbits arerepellingbecause nearby orbits move away
from them.
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Figure 13.1: The cobweb diagram for the logistic map, xn+1 = 3.51xn(1 − xn),
suggests that iterates of x0 = 0.72 approach a stable orbit of period 4.

✓ Is the fixed point in the chapter cover figure stable? Is the period-4 orbit
in Figure 13.1 stable? How about the two fixed points in that figure? [Sugges-
tion: Use the Discrete Tool as an aid in answering these questions.]

◆ Linear versus Nonlinear Dynamics

The solutions of linear and of nonlinear ODEs are compared and contrasted
in Chapter/Modules 6 and 7. Now we will do the same comparison for linear
and nonlinear maps of the real line into itself.

Let’s look at the iteration of linear functions such as the proportional☞ Refer to the first
submodule of Module 13 for
examples.

growth modelxn+1 = Lλ(xn), which has a fixed point atx∗ = 0. This fixed
point is stable if|λ| < 1, so the orbit of every initial population tends to 0 as
n → ∞. If λ = 1, thenxn+1 = xn, and hence every point is a fixed point. The
fixed point atx∗ = 0 is unstable if|λ| > 1, and all initial populations tend to
∞ asn → ∞. If λ = −1 thenx∗ = 0 is the only fixed point and every other
point is of period 2 sincexn+1 = −xn.

The iteration of any linear functionf (x) = ax+ b (with slopea �= 1)
behaves much like the proportional growth model. Fixed points are found by
solvingax∗ + b = x∗, and their stability is governed by the magnitude ofa.

The iteration of nonlinear functions can be much more complex than that
of linear functions. In particular, nonlinear functions can exhibit chaotic be-
havior, as well as periodic behavior. To illustrate the types of behavior typical
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Figure 13.2: The cobweb diagram of the logistic map xn+1 = 3.9xn(1− xn) sug-
gests that iterates of x0 = 0.8361either approach an attracting periodic orbit
of very high period, or else wander chaotically.

to nonlinear functions we consider; in the second submodule of Module 13,
the one-parameter family oflogistic functions

gλ(x) = λx(1− x)

Figure 13.2 shows how complex an orbit of a logistic map may be for certain
values ofλ.

◆ Stability of a Discrete Dynamical System

Now we turn our attention to the stability of an entire dynamicalsystemrather
than just that of a fixed point. One of the most important ideas of dynamical
systems (discrete or continuous) is that ofhyperbolicity. Hyperbolic points
are stable to small changes in the parameters of a dynamical system. This
does not mean that a perturbation (a small change) of the function leaves the
fixed or periodic point unchanged. It simply means that the perturbed function
will also have a fixed point or periodic point “nearby,” and that this point has
the stability properties of the corresponding point of the unperturbed function.
For example, atλ = 2 the functiong2(x) has an attracting fixed pointx∗ = 0.5.
For values ofλ near 2, the functiongλ(x) also has an attracting fixed point
x∗ = (λ − 1)/λ. For example, ifλ = 2.1 then the attracting fixed point is
x∗ = 0.524. Even though the fixed point moved a little asλ increased, the



Id: chapter13.tex,v 1.7 1998-02-27 23:49:05-08 drichard Exp drichard ODE Architect Workbook Page 238 on June 30, 1998 at 3:06

238 Chapter 13

fixed point still exists and it is still attracting. The following theorem provides
a way of determining whether fixed points and periodic orbits are hyperbolic.

THEOREM 13.1 Given a discrete dynamical systemxn+1 = fλ(xn),
a fixed pointx∗ of fλ(x) is hyperbolic if| f ′

λ(x
∗)| �= 1. Similarly, a peri-

odic pointx∗ of periodn (and its orbit) is hyperbolic if|( f ◦n
λ )′(x∗)| �= 1.

Because the number and type of periodic points do not change at pa-
rameter values wherefλ(x) has hyperbolic points, we say that the qualitative
structure of the dynamical system remains unchanged. On the other hand,
this theorem also implies that changes in the qualitative structure of a family
of discrete dynamical systems can occur only when a fixed or periodic point
is not hyperbolic. We see this in the proportional growth modelxn+1 = λxn

whenλ = 1 andλ = −1. Forλ = 1− ε [and henceL′
1−ε(1) = λ = 1− ε] the

fixed pointx = 0 is attracting. But forλ = 1+ ε the fixed point is repelling.
Thus, asλ passes through the value 1, the stability of the fixed point changes
from attracting to repelling and the qualitative structure of the dynamical sys-
tem changes.

◆ Bifurcations

A change in the qualitative structure of a discrete dynamical system, such as
a change in the stability of a fixed point, is known as abifurcation. Two other
types of bifurcations can also occur whenfλ is nonlinear.

The first, known as asaddle-nodebifurcation, occurs whenx∗ is a peri-
odic point of periodn and( f ◦n

λ )′(x∗) = 1. In a saddle-node bifurcation, the
periodic pointx∗ splits into a pair of periodic points, both of periodn, one of
which is attracting and the other repelling. A saddle-node bifurcation occurs
in the logistic growth familygλ(x) whenλ = 1. At this value the fixed point
x∗ = 0 (which is attracting forλ < 1) splits into a pair of fixed points,x∗ = 0
(repelling forλ > 1), andx∗ = (λ − 1)/λ (attracting forλ > 1). This type of
bifurcation is sometimes called anexchange of stabilitybifurcation.

The second important type of bifurcation is calledperiod-doublingand
occurs whenx∗ is a periodic point of period-n and( f ◦n

λ )′(x∗) = −1. In this
bifurcation the attracting periodn point becomes repelling and an attracting
period-2n orbit is spawned. (Note that the stability can be reversed.) This
occurs in the logistic familygλ(x) whenλ = 3. At this parameter value, the
attracting fixed pointx∗ = (λ − 1)/λ becomes repelling and a stable period-2
orbit emerges with one point on each side ofx∗ = (λ−1)/λ. Since the logistic
equations model population growth, this says that the population converges to
an equilibrium for growth rate constantsλ less than 3. However, for values of
λ greater than 3, the population oscillates through a sequence of values.

The bifurcations that occur in a one parameter family of discrete dynam-
ical systems can be summarized in abifurcation diagram. For each value of
the parameter (on the horizontal axis) the diagram shows the long-term be-
havior under iteration of a “typical” initial point. For example, if you see
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Figure 13.3: Part of the bifurcation diagram for the logistic map.

a single point in the diagram above a particular parameter value, that point
corresponds to an attracting fixed point. The spot in the diagram where you
see an arc of attracting fixed points split into two arcs corresponds to a bifur-
cation from an attracting fixed point for an attracting orbit of period 2 (i.e.,
period doubling). If the diagram shows a multitude of points above a given
parameter value, then either you are seeing an attracting periodic orbit of a
very high period, or else you are seeing chaotic wandering. It should be noted
that when constructing the bifurcation diagram for each parameter value and
initial point, the first 50 or so iterates are omitted so that only the long-term
behavior is visible in the diagram. See Figure 13.3 and Screen 2.4 in Mod-
ule 13 for the bifurcation diagram of the logistic map.

The stable arcs in these diagrams are usually straightforward to generate
numerically. We constructed a bifurcation diagram on an interval [λmin, λmax]
for the logistic population model xn+1 = gλ(xn) using the following proce-
dure.

1. Fix λmin, λmax, λinc, nmin, nmax. Here λinc is the step size between suc-
cessive values of λ while nmin and nmax are bounds on the number of
iterates used to construct the diagram; they control the accuracy of the
diagram. Typical values are nmin = 50 and nmax = 150.

2. Let λ = λmin.

3. Taking x0 = 0.5 for example, compute the first nmin iterates of gλ with-
out plotting anything. This eliminates transient behavior.
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4. For nmin ≤ n ≤ nmax, plot the points (λ, g◦n
λ (0.5)). If the orbit of 0.5

converges to a periodic orbit, only points near this orbit are plotted. If
the orbit of 0.5 isn’t periodic, then the points above λ seem to be almost
randomly distributed.

5. Let λ = λ + λinc.

6. If λ < λmax, go back to Step 3 and repeat the process.

✓ Go to the one-dimensional tab of the Discrete Tool. Use the default val-
ues, but set the value of c at 1 (c in the tool plays the role of λ in Chap-
ter/Module 13). Click on the bifurcation diagram. Keep your finger on the
up-arrow for c and describe what is happening. Any attracting periodic or-
bits? For what values of c do these orbits occur? What are the periods?

◆ Periodic and Chaotic Dynamics

One of the most celebrated theorems of discrete dynamical systems is often
paraphrased “Period 3 Implies Chaos.” This theorem, originally proven by
S̆arkovskii and independently discovered by Li and Yorke1, is a remarkable
result in that it requires relatively little information about the dynamical sys-
tem and yet it returns a treasure trove of information.

THEOREM 13.2 If f is a continuous function on the real line and if
there exists a point of period 3, then there exist points of every period.

For the logistic population model there exists an attracting period-3 orbit
at λ = √

8 + 1 ≈ 3.83, and most initial conditions in the unit interval con-
verge to this orbit (see Figure 13.4). In terms of our model, most populations
tend to oscillate between the three different values of the period-3 orbit. The-
orem 13.2 states that even more is going on at λ = √

8 + 1 than meets the
eye. If we pick any positive integer n, there exists a point p such that n is
the smallest positive integer allowing g◦n

λ (p) = p. Thus, for example, there
exists a point that returns to itself in 963 iterates. The reason we don’t “see”
this periodic orbit (or, indeed, any periodic orbit, except that of period 3) is
that it is unstable, so no iterate can approach it. But orbits of every period are
indeed present if λ = √

8 + 1.

1James Yorke and T.Y. Li are contemporary mathematicians who published their result in 1975 (see
References). They were the first to apply the word “chaos” to the strange behavior of the iterates of
functions such as gλ. A.N. S̆arkovskii published a stronger result in 1964, in Russian, in the Ukrainian
Mathematical Journal, but it remained unknown in the West until after the paper by Yorke and Li had
appeared.
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Figure 13.4: At λ = √
8 + 1 ≈ 3.83 the logistic map gλ = λx(1 − x) has an attract-

ing orbit of period 3; the points x0, x1, . . . , x49 have been suppressed in this
graph.

◆ What is Chaos?

So, you’re probably asking, what is chaos? The definition of chaos is a bit
slippery. In fact, mathematicians are still arguing about a proper definition.
But to get the idea across we’ll use one due to Devaney.

Let S be a set such that if x lies in S, then f ◦n(x) belongs to S for all
positive integers n. The set S is called invariant. If you start in an invariant
set, you can’t get out! Now let’s define what we mean by chaos in an invariant
set S.

A map f : S→ S is chaoticif:

1. periodic points are dense in S;

2. f displays sensitive dependence on initial conditions in S; and

3. f is topologically transitive in S.

The first condition of this definition is relatively explained like this: A☞ A set U of real numbers is
openif every point p of U has
the property that all points in
some interval (p− a, p+ a) are
also in U.

set A is densein another set B if for every point x in B and every open set
U containing x there exists points of A that are also in U. Therefore, condi-
tion 1 says that periodic points are almost everywhere in S. This means that S
contains many periodic points; Theorem 13.1 gives a condition guaranteeing
infinitely many of these points.
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In the second condition, sensitive dependence on initial conditionsmeans☞ Module 13 has examples.

that points that are initially close to one another eventually get moved far apart
under iteration by f .

Finally, f is topologically transitive(or mixing) if given any pair of open
sets U and V in S, some iterate of f takes one or more points of U into V.
This means that points of open sets get spread throughout the set S.

The most significant item on this list for applied problems is sensitive
dependence on initial conditions. Let’s consider the logistic growth model
at a parameter value where the dynamics are chaotic. Sensitive dependence
implies that no matter how close two populations may be today, there will be a
time in the future when the populations differ significantly. So environmental
disturbances that cause small population changes will eventually lead to large
changes, if chaotic dynamics exist.

Chaotic dynamics occur in a wide range of models. Although the defini-
tions above are given in terms of a single scalar dynamical system, everything
extends to higher dimensions, and many of the applications are two or three
dimensional. In addition to models of population dynamics, chaos has been
observed in models of the weather, electrical circuits, fluid dynamics, plane-
tary motion, and many other phenomena. The relatively recent understanding
of chaos has shed new light on the complexity and beauty of the world we
inhabit.

◆ Complex Numbers and Functions

Probably the most popular type of discrete dynamical system is a complex
dynamical systemwhere the variables are complex numbers instead of real
numbers. The intricate fractal structures common to images generated using
complex dynamics have appeared everywhere from calendars to art shows and
have inspired both artists and scientists alike. Many of the fundamental ideas
of complex dynamics are identical to those of real dynamics and have been
discussed in previous sections. In what follows, we will highlight both the
similarities and differences between real and complex dynamics.

Recall that complex numbers arise when factoring quadratic polynomials
with negative discriminant. Because the discriminant is negative we must
take the square root of a negative real number, which we do by defining i to
be

√−1. We then write the complex numberas z= x + iy. We say that x is
the real part of zand y is the imaginary part of z. The complex number z is
represented graphically on the complex plane by the point having coordinates
(x, y). It is often useful to represent complex numbers in polar coordinates by
letting x = r cos θ and y = r sin θ so that

�

�

�

�

z= x + iy

= reiθ

r
θ

x

y

Imaginary axis

Real axis
z= r (cosθ + i sin θ) = reiθ

The remarkable relationship cos θ + i sin θ = eiθ between polar coordinates
and exponential functions is known as Euler’s Formula. The number r =☞ Euler’s formula is also

used in Chapter 4.
√

x2 + y2 is the distance from the origin to the point z in the complex plane
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and is sometimes called the modulusof z, and it is denoted by r = |z|. The
angle θ is called the argumentof z. Note that the usual properties of exponen-
tial functions hold in the complex plane. Thus, given two complex numbers
z= reiθ and w = seiφ, their product is

zw = rsei(θ+φ)

A complex function f(z) takes a complex number z as its argument and
returns a complex number w = f (z). Differentiation proceeds as in the real
case; for example, (z3)′ = 3z2. Unlike functions of one real variable, we
cannot graph a complex function since both the domain and range are two-
dimensional.

◆ Iterating a Complex Function

Iteration of a complex function is identical to the iteration of a real function.
Given an initial z-value z0, iteration generates a sequence of complex numbers
z1 = f (z0), z2 = f (z1), etc. Fixed and periodic points are defined in the same
way as for real functions, as are stability and instability. Here are the previous
criteria for stability, but now applied to complex functions.

• A fixed point z∗ is stable if | f ′(z∗)| < 1, and unstable if | f ′(z∗)| > 1.

• A period-n point z∗ (and its orbit) is stable if |( f ◦n)′(z∗)| < 1, and un-
stable if |( f ◦n)′(z∗)| > 1.

Let’s consider a simple example to illustrate these ideas. Let f (z) = z2.
Then z∗ = 0 is an attracting fixed point since f (0) = 0 and | f ′(0)| = 0. If z
is any point such that |z| < 1, then the sequence { f ◦n(z)}∞n=0 converges to 0 as
n → ∞. On the other hand, if |z| > 1, then the sequence { f ◦n(z)}∞n=0 goes to
infinity as n → ∞. To see what happens to values of z having modulus equal
to 1, let’s write z= eiθ. Then f (z) = e2iθ, which also has modulus 1. Thus all
iterates of points on the unit circle |z| = 1 stay on the unit circle. The point
z∗ = 1 is a repelling fixed point since f (1) = 1 and | f ′(1)| = 2. The period-2
points are found by solving f ( f (z)) = z4 = z. We can rewrite this equation
as

z(z3 − 1) = 0

One solution to this equation is z∗ = 0, corresponding to the attracting fixed
point, and another solution is z∗ = 1, corresponding to the repelling fixed
point. Notice that the fixed points of f (z) remain fixed points of f ( f (z)), or
equivalently, are also period-2 points of f (z). To find the other two solutions,☞ Any period-n point is also

a periodic point of all periods
which are positive integer
multiples of n.

we write z= eiθ to get the equation

e3iθ = 1

which we need to solve for θ. Since we are working in polar coordinates, we
note that 1 = ei2nπ where n is an integer. This implies that 3θ = 2nπ and from
this we find a second pair of period-2 points at z= e2πi/3 and z= e4πi/3. Both
of these are repelling.
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Figure 13.5: The filled Julia set for f (z) = z2 + c, where c = 0.4012 − 0.3245i

✓ Show that e2πi/3 and e4πi/3 are repelling period-2 points of f = z2. Show
that f ◦n(z) → 0 as n → ∞ if |z| < 1, and that | f ◦n(z)| → ∞ if |z| > 1. What
is the “basin of attraction” of the fixed point z= 0?

◆ Julia Sets, the Mandelbrot Set, and Cantor Dust

The set of repelling periodic points of the function f = z2 is dense on the unit
circle, although we don’t show that here. This leads us to the definition of the
Julia set.

☞ The closureof a set A
consists of the points of A
together with all points that are
limits of sequences of the points
of A.

DEFINITION The filled Julia set Kof a complex-valued function f is
the set of all points whose iterates remain bounded. The Julia set Jof
f is the closure of the set of repelling periodic points.

For f = z2, the filled Julia set K of f is the set of all complex numbers z
with |z| ≤ 1, while the Julia set J of f is the unit circle |z| = 1. This is a very
simple example of a Julia set. In general, Julia sets are highly complicated
objects having a very intricate fractal structure. For example, see Figure 13.5
and Screens 3.3 and 3.4 of Module 13.

In the above example, the Julia set J divides those points that iterate to
infinity (points outside the unit circle) and those that converge to the attracting
fixed point (points inside the unit circle). This division of the domain by
the Julia set is often the case in complex dynamics and provides a way of
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numerically computing the filled Julia set of a given function f . Assign a
complex number to each screen pixel. Then use each pixel (i.e., complex
number) as an initial condition and iterate to determine whether the orbit of
that point exceeds some predetermined bound (for example |z| = 50). If it
does, we say the orbit diverges and we color the point black. If not, we color

☞ In the Discrete Tool of
ODE Architect, the coloring is
reversed. Points in the Julia set
are colored black and points
whose orbits diverge past the
predetermined bound are colored
with various colors according to
their divergence rates (e.g., red is
the fastest, dark blue the slowest).

the point red to indicate it is in the filled Julia set.
Earlier in this chapter we saw the importance of attracting periodic orbits

in building a bifurcation diagram for a real map f . Although we didn’t men-
tion it then, we can home in on an attracting periodic orbit of f (if there is one)
by starting at x0 = x̃ if f ′(x) is zero at x̃ and nowhere else. Complex functions
f (z) for which f ′(z̃) = 0 at exactly one point z̃have the same property as the
following theorem shows.☞ A complex function f is

analytic if its derivatives of every
order exist. A point z̃ is a critical
point of f if f ′(z̃) = 0.

THEOREM 13.3 Let f be an analytic complex-valued function with
a unique critical point z̃. If f has an attracting periodic orbit then, the
forward orbit of z̃ converges to this orbit.

Let’s look at some of the implications of this theorem with the family of func-
tions fc(z) = z2 + c where c = a+ ib is a complex parameter. For each value
of c the only critical point is z̃ = 0. To find an attracting periodic orbit for a
given value of c we need to compute the orbit

{0, c, c2 + c, . . . }
and see if the orbit converges or not. If it does, we found the attracting pe-
riodic orbit; if not, there doesn’t exist one. Let’s see what happens when we
set c = 1 to give the function f1(z) = z2 + 1. The orbit of the critical point is
{0, 1, 2, 5, 26, . . .}, which goes to infinity. Thus, f1 has noattracting periodic
orbit and the Julia set does not divide points that converge to a periodic orbit
from points that iterate to infinity. In fact, it can be shown that this Julia set is
totally disconnected; it is sometimes referred to as Cantor dust. Click on out-
lying points on the edge of the Mandelbrot (defined below) set in Screen 3.5
of Module 13 and you will generate Cantor dust in the upper graphics screen.

This leads to another question. If some functions in the family fc have
connected Julia sets (such as f0 = z2) and other functions in the family have
totally disconnected Julia sets (such as f1), what set of points in the c plane
separates these distinctive features? This set is the boundaryof the Mandel-
brot set. The Mandelbrot set Mof the function fc(z) = z2 + c is defined as the
set of all complex numbers c such that the orbit { f ◦n

c (0)∞
n=1} remains bounded,

that is, | f ◦n(0)| ≤ K for some positive number K and n.
This definition leads us to an algorithm for computing the Mandelbrot

set M. Assign to each pixel a complex number c. Choose a maximum num-
ber of iterations N and determine whether | f ◦n

c (0)| < 2 for all n ≤ N (it can
be proven that if | f ◦n

c (0)| > 2 for some n, then the orbit goes to infinity).
If so, then color this point green to indicate that it is in the Mandelbrot set.
Otherwise, color this point black. It is this computation that gives the won-
derfully intricate Mandelbrot set; see Figure 13.6 and Screens 3.4 and 3.5 of
Module 13.
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Figure 13.6: The Mandelbrot set; the cross-hairs are set on the point 0.4012 −
0.3245i, which gives the Julia set shown in Figure 13.5.

The Mandelbrot set actually contains much more information than is de-
scribed here. It is, in fact, the bifurcation diagram for the family of functions
fc(z) = z2 + c. Each “blob” of the set corresponds to an attracting periodic or-
bit of a particular period. Values of c in the big cardioid shown on Screen 3.4
of Module 13 give attracting period-1 orbits for fc. Values of c in the circle
immediately to the left of this cardioid give attracting period-2 orbits for fc.
Other “blobs” give other attracting periodic behaviors.

Although we have only defined the Mandelbrot set for the specific family
fc = z2 + c, it can be defined in an anlagous way for other families of complex
functions (see the Discrete Tool). One final note on Julia sets and the Mandel-
brot set. You’ve probably seen intricately colored versions of these objects on
posters or elsewhere. The coloring is usually determined by how “fast” orbits
tend to infinity. The color scheme is, of course, up to the programmer.

Module 13 introduces and lets you play with three important discrete dy-
namical systems—linear, logistic, and a third that uses complex numbers. Ex-
plorations 13.1–13.4 extend these ideas and introduce other maps with curious
behavior under iteration.
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notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 13.1. One-Dimensional Maps and the Discrete Tool

1. Go to the Discrete Tool and enter the proportional growth model xn+1 = cxn,
where c is the parameter. For the range 0 ≤ n ≤ 30 and the initial condition
x0 = 0.5, explore and describe what happens to the iteration map, time series,
and bifurcation diagram as the parameter is increased from −2 to 2. For
what values of c is there a sudden change in the behavior of the iterates (the
bifurcation values of c)? For what values of c are there 1, 2, or infinitely many
fixed or periodic points? Which of there points are attractors? Repellers?

2. Go to the Discrete Tool and explore and describe what happens to the iteration
map, the time series, and the bifurcation diagram as the parameter c for the
logistic map gc(x) = cx(1 − x) is incremented from 1 to 4. Use the range
50 ≤ n ≤ 150 to avoid an initial wandering, and the initial condition x0 = 0.5.
Describe what all three graphs on the tool screen look like at values of c where
there is a periodic orbit? What is the period? Go as far forward as you can
with the period doubling sequence of values of c: 3, 3.434, . . . . What are
the corresponding periods? [Suggestion:Zoom on the bifurcation diagram.]
Repeat with the sequence 3.83, 3.842, . . . .
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3. In the Discrete Tool enter the tent map Tc on the interval 0 ≤ x ≤ 1:

Tc(x) = c(1 − 2 abs(x− 0.5)) =
{

2cx, 0 ≤ x ≤ 0.5

2c(1 − x), 0.5 ≤ x ≤ 1

where the parameter c is allowed to range from 0 to 1. Describe and explain
what you see as c is incremented from 0 to 1. [Suggestion:use the Edit option
in the Menu box for the Bifurcation Diagram and set 200 ≤ n ≤ 300 in order
to suppress the initial transients.] Any orbits of period 2? Period 3?
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Exploration 13.2. Circle Maps

Another common type of discrete dynamical system is a circle map, which
maps the perimeter of the unit circle onto itself. These functions arise when
modeling coupled oscillators, such as pendulums or neurons. The simplest
types of circle maps are rotations that take the form

Rω(θ) = (θ + ω) mod 2π

where 0 ≤ θ ≤ 2π and ω is a constant.

1. Show that if ω = (p/q)π with p and q positive integers and p/q in lowest
terms, then every point has period q.

2. Show that if ω = aπ with a an irrational number, then no point on the circle
is periodic.
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3. What is the long-term behavior of the orbit of a point on the circle if ω = aπ,
where a is an irrational number?
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Exploration 13.3. Two-Dimensional Maps and the Discrete Tool

A two-dimensional discrete dynamical system looks like thes:

xn+1 = f (xn, yn, c)

yn+1 = g(xn, yn, c)
(3)

where f and g are given functions and c is a “place holder” for parameters.
For given values of c, x0, and y0, system (3) defines an orbit of points

(x0, y0), (x1, y1), (x2, y2), . . .

in the xy-plane. The two dimensional tab in the Discrete Tool allows you to
explore discrete systems of the form of (3)

1. Open the Discrete Tool and explore the default system (a version of what is
known as the Hènon Map):

xn+1 = 1 + yn − ax2
n

yn+1 = bxn
(4)

where a and b are parameters. For fixed values of the parameters a and b
find the fixed points. Are they sinks, sources, or neither? How sensitive is the
long-term behavior of an orbit to small changes in the initial point (x0, y0)?
What happens if you increment a through a range of values? If you increment
b? Any period doubling sequences? In your judgment, is there any long-term
chaotic wandering? [Suggestion:Keep the values of a and b within small
ranges of their default values to avoid instabilities.]
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2. Repeat Problem 1 with the following version of the Hènon map:

xn+1 = a− x2
n + byn

yn+1 = xn

Start with a = 1.28, b = −0.3, x0 = 0, y0 = 0.
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Exploration 13.4. Julia and Mandelbrot Sets and the Discrete Tool

Note that the color schemes for the Julia and Mandelbrot sets in Module 13
differ from those in the discrete tool.

1. Use the Discrete Tool to explore the Mandelbrot set and Julia sets for the
complex family fc = z2 + c. What happens to the filled Julia sets as you
move c from inside the Mandelbrot set up toward the boundary, then across
the boundary and out beyond the Mandelbrot set? Describe how the Julia sets
change as you “walk” along the edge of the Mandelbrot set.
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2. Repeat Problem 1 for the complex family gc = csin z.

3. Repeat Problem 1 for the family hc = cez.
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