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Poincaré map of a forced damped pendulum superimposed on a tra-
jectory.

Overview In this Chapter we’ll look at solutions of a forced damped pendulum ODE. In
the linear approximation of small oscillations, this ODE becomes the standard
constant-coefficient ODE x′′ + cx′ + kx = F(t), which can be solved explicitly in
all cases. Without the linear approximation, the pendulum ODE contains the term
ksinx instead of kx. Now the study becomes much more complicated. We’ll focus
on the special case of the nonlinear pendulum ODE

x′′ + cx′ + sinx = Acost (1)

but our results leave a world of further things to be discovered. We’ll show that
appropriate initial conditions will send the pendulum on any desired sequence of
gyrations, and hint at how to control the chaos by finding such an initial condition.

Key words Forced damped pendulum; sensitivity to initial conditions; chaos; control; Poincaré
sections; discrete dynamical systems; Lakes of Wada; control

See also Chapter 10 for background on the pendulum. Chapter 13 for more on discrete dy-
namical systems and other instances of chaos and sensitivity to initial conditions.
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◆ Introduction

How might chaos and control possibly be related? These concepts appear at
first to be opposites, but in fact they are two faces of the same coin!

A good way to start discussing this apparent paradox is to think about
learning to ski. The beginning skier tries to be as stable as possible, with
feet firmly planted far enough apart to give confidence that she or he will not
topple over. If you try to ski in such a position, you cannot turn, and the only
way to stop, short of running into a tree, is to fall down. Learning to ski is
largely a matter of giving up on “stability,” bringing your feet together so as
to acquire controllability! You need to allow chaos in order to gain control.

Another example of the relation between chaos and control is the early
aircraft available at the beginning of World War I, carefully designed for great-
est stability. The result was that their course was highly predictable, an easy
target for antiaircraft fire. Very soon the airplane manufacturers started to
build in enough instability to allow maneuverability!

◆ Solutions as Functions of Time

The methods of analysis we will give can be used for many other differential
equations, such as Duffing’s equation

x′′ + cx′ + x− x3 = Acosωt, (2)

or the differential equation

x′′ + cx′ + x− x2 = Acosωt, (3)

which arises when studying the stability of ships. The explorations at the end
suggest some strategies for these problems.

Let’s begin to study ODE (1) withc = 0.1:

x′′ + .1x′ + sinx = Acost (4)

Let’s compute some solutions, starting att = 0 with A = 1 and various values
of x(0) andx′(0), and observe the motion out tot = 100, or perhaps longer
(see Figure 12.1). We see that most solutions eventually settle down to an
oscillation with period 2π (the same period as the driving force). Thisxt-plot
actually shows oscillations which differ by multiples of 2π.

This settling down of behaviors at various levels is definitely a feature
of the parameter values chosen: for the amplitudeA = 2.5 in ODE (4), for
instance, there does not appear to be any steady-state oscillation at all.

Looking at such pictures is quite frustrating: it is very hard to see the
pattern for which initial conditions settle down to which stable oscillations,
and which will not settle down at all.
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Figure 12.1: Solution curves of ODE (4) with x(0) = 0, x′(0) = 2, 2.1.

◆ Poincaré Sections

Poincaré found a way to understand and visualize the behavior of our differ-
ential equation: he sampled solutions of ODE (4) at multiples of the period
2π of the driving function:

0,2π,4π, . . . ,2kπ, . . .

This is much like taking pictures with a strobe light.
An equivalent way of saying this is to say that we will iterate1 the map-

ping P : R2 → R
2 which takes a point(a, b) in R

2, computes the solution
x(t) with x(0) = a, x′(0) = b, and sets☞ Note that the clock starts

at t0 = 0 when generating
Poincaré plots. P(a, b) = (x(2π), x′(2π)) (5)

This mappingP is called aPoincaŕe mapping. If you apply the operatorP to
(a, b) k times in succession, the result isPk(a, b) and we see that

Pk(a, b) = (x(2kπ), x′(2kπ))

In sense, the Poincar´e section is simply a crutch: every statement about☞ When thexx′-plane is
used to chart the evolution of the
pointsPk(a, b), k = 1,2, . . . , it
is called the Poincar´e plane.

Poincaré sections corresponds to a statement about the original ODE, and vice
versa. But this crutch is invaluable the orbits of a nonautonomous ODE such
as (4) intersect each other and themselves in a hopelessly tangled way.

1Chapter 13 discusses iterating mapsf : R→ R; there you will find that already the mapf (x) =
λx(1 − x) is filled with surprises. Before trying to understand the iteration ofP, which is quite
complicated indeed, the reader should experiment with several easier examples, like linear mapsR

2 →
R

2. The notion ofbasinwill also be much clarified by considering the iteration of Newton’s method
in one complex variable, perhaps for cubic polynomials.
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◆ Periodic Points

A good way to start investigating the Poincar´e mappingP (or for that matter,
the iteration of any map) is to ask: what periodic points does it have? Setting
x′ = y, aperiodic pointis a point(x, y) in R2 such that for some integerk we
havePk(x, y) = (x, y). Fixed points are periodic points withk = 1, and are
particularly important.

Periodic points of periodk for P are associated with periodic solutions of
ODE (4) of period 2kπ. In particular, ifx(t) is a solution which is periodic of
period 2π, then

(x(0), x′(0)) = (x(2π), x′(2π))

is a fixed point ofP. If you observe this solution with a strobe which flashes
every 2π, you will always see the solution in the same place.

◆ The Unforced Pendulum

If there is no forcing term in ODE (4), then we have an autonomous ODE like
those treated in Chapter 10.

Example: The ODE

x′′ + x′ + 10sinx = 0

models a damped pendulum without forcing. A phase plane portrait is shown
in Figure 12.2. Note that the equilibrium points (of the equivalent system) at
x = 2nπ, x′ = 0 are spiral sinks, but the equilibrium points atx = (2n+ 1)π,
x′ = 0 are saddles. Note also that the phase plane is divided into slanting re-
gions, each of which has the property that its points are attracted to the equi-
librium point inside the region. These regions are calledbasins of attraction.
If a forcing term is supplied, these basins become all tangled up (Figure 12.4
on page 227).

There is a Poincar´e mappingP for the unforced damped pendulum, which
is fairly easy to understand, and which you should become familiar with be-
fore tackling the forced pendulum. In this case, two solutions of ODE (4)
with A = 0 stand out: the equilibriax(t) = 0 andx(t) = π for all t. Cer-
tainly if the pendulum is at one of these equilibria and you illuminate it
with a strobe which flashes everyT seconds, whereT is a positive num-
ber, you will always see the pendulum in the same place. Thus these points
are fixed points of the corresponding Poincar´e mappingP. In thexx′-plane,
the same thing happens at the other equilibrium points, that is, at the points
. . . , (−2π,0), (0,0)(2π,0), . . . for the “downward” stable equilibria, and at
the points. . . , (−3π,0), (−π,0), (π,0), . . . for the unstable equilibria.

The analysis in Module 10 using an integral of motion should convince
you that for the unforced damped pendulum, these are the only periodic points:
if the pendulum is not at an equilibrium, the value of the integral decreases
with time, and the system cannot return to where it was.
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Figure 12.2: Basins of attraction of the downward equilibrium positions of
the unforced damped pendulum are bounded by separatrices.

If you start the pendulum with bothx(0) andx′(0) small, the damping
will simply kill off the motion, and the pendulum will be attracted to the
downward equilibrium. The point(0,0) in state space is called asink.

The behavior is more interesting near an unstable equilibrium. Imagine
imparting an initial velocity to the bob by kicking it. For a small kick, it will
swing back. Now kick it a little harder: it will rise higher, and still swing
back. Kick it harder still, and it will make it over the top, and hit you in
the back if you aren’t careful. Dividing the kicks which don’t make it over
from those that do is a very special kick, where pendulum rises forever, more
and more slowly, tending to the unstable equilibrium. Thus there are initial
conditions which generate solutions that tend to the unstable equilibrium; in
the Poincar´e plane these solutions form two curves which meet end to end
at the fixed point corresponding to the unstable equilibrium. Together they
form thestable separatrixof the fixed point. There are also curves of initial
conditions which come from the unstable equilibrium; together they form the
unstable separatrixof the unstable equilibrium. See Figure 12.3

As stated earlier, a good first thing to do when iterating a map is to search
for the periodic points; a good second thing is to find the periodic points which
correspond to unstable equilibria (saddles, in the case of the pendulum) and
find their separatrices.

For the unforced damped pendulum, the equilibria of the differential equa-
tion and the fixed points of any Poincar´e map coincide; so, too, do the separa-
trices of the unstable equilibria (in the phase plane) and the separatrices of the
corresponding saddle fixed points in the Poincar´e plane. These separatrices
separate the trajectories which approach a given sink from the trajectories that
approach a different sink.
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Figure 12.3: Stable and unstable separatrices at a saddle for an unforced
damped pendulum. Which are the stable separatrices?

✓ “Check” your understanding by reproducing the plot in Figure 12.3.

◆ The Damped Forced Pendulum

We described above the Poincar´e plane for the unforced pendulum. The same
description holds for the forced pendulum. A figure showing a Poincar´e
map for a forced pendulum appears as the chapter cover figure. Thus, in the
Poincaré plane, we expect to see a collection of fixed points corresponding to
the oscillations to which the pendulum “settles down”, and each has a basin:
the set of initial conditions which will settle down to it. The basins appear to
be extraordinarily tangled and complicated, and they are. The reader should
put up the picture of the basins (Screen 2.6 in Module 12), and practice super-
imposing iterations on the figure, checking that if you start in the blue basin,
the entire orbit remains in the blue basin, perhaps taking a complicated path
to get near the sink, but making it in the end.

◆ Tangled Basins, the Wada Property

In the tangled basins Screen 3.3 of Module 12, each basin appears to be made
of a central piece, and four canals which go off and meander around the plane.
The meandering appears to be completely random and chaotic, and the only
thing the authors really know about the shapes of the basins of our undamped
pendulum is the following fact: The basins have theWada property: every
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Figure 12.4: Tangled basins for a forced damped pendulum.

point of the boundary2 of any basin is in the boundary of all the others. Thus
if you start at a boundary point of any basin, and perturb the initial condition
an arbitrarily small amount, you can land in any of the infinitely many basins.

A careful look at Figure 12.4 should convince you that this stands a good
chance of being true: Each region of a canal boundary point includes pieces
on many curves. It isn’t clear, of course, that there are canals ofall the basins
between any two canals.

It is one thing to think that the Wada property is likely true, and quite
another to prove it. It isn’t clear how you would prove anything whatsoever
about the basins: they do not appear to be amenable to precise study.

To get a grip on these basins, the first step is to understand why they
appear to be bounded by smooth curves, and to figure out what these smooth
curves are. For each sink (solid white squares in Figure 12.4), there are in fact
four periodic points (open squares), each of period two, which are saddles,
and such that for each saddle one of the two unstable separatrices is entirely
contained in the corresponding basin.

2The boundary∂U of an open setU ⊂ R
2 is a pointx ∈ R2 which is not inU, but such that

there exists a sequence of pointsxn ∈ U which converges tox. Later we will encounter the notion
of accessible boundary: the pointsx ∈ ∂U such that there exists a parametrized curveγ : (0,1] → U
such that limt→0 γ(t) = x. For simple open sets, the boundary and the accessible boundary coincide,
but not for our basins.
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The next step is to show that theaccessible boundaryof the basin is made
up of the stable separatrices of these saddles. This uses the technique ofbasin
cells, as pioneered by Kennedy, Nusse and Yorke. To see a fleshed out sketch,
see the C.ODE.E article referenced at the end of this chapter.

◆ Gaining Control

The statement about the basins having the Wada property is, in some sense, a
negative statement, saying that there is maximum possible disorder. Is there
some positive statement one can make about the forced pendulum (for these
parameter values)? It turns out that there is. The precise statement is as
follows.

During one period of the forcing term, say during

t in the intervalIk = [2kπ,2(k+ 1)π]

the pendulum will do one of the following four things:

• It will cross the bottom position exactly once moving clockwise (count
this possibility as−1);

• It will cross the bottom position exactly once moving counterclockwise
(count this possibility as+1);

• It will not cross the bottom position at all (count this possibility as 0);

• It will do something else (possibility NA).

Note that most solutions appear to be attracted to sinks, and that the stable
oscillation corresponding to a sink crosses the bottom position twice during
eachIk, and hence these oscillations (and most oscillations after they have
settled down) belong to the NA category.

The essential control statement we can make about the pendulum is the
following:

For any biinfinite sequence. . . , ε−1, ε0, ε1, . . . of symbolsεi selected
from the set{−1,0,1}, there existsx(0), x′(0) such that the solution
with this initial condition will doεk during the time intervalIk.

The chaos game in Module 12 suggests why this might be true; the tech-
niques involved in the proof were originally developed by Smale3.

3Stephen Smale is a contemporary mathematician who was awarded a Fields medal (the mathe-
matical equivalent of a Nobel prize) in the early 1960’s. See Devaney in the references at the end of
this chapter.
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Figure 12.5: Start in quadrilateral Q0 and reach forward into Q1 and backward
into Q−1.

We start by drawing quadrilateralsQk around thekth saddle, long in the
unstable direction and short in the stable direction, such that it crosses a good
part of the tangle. We can now translate our symbolsεi , which refer to the
differential equation, into the Poincar´e mapping language:

If at time t = 2kπ the pendulum is inQk and at time 2(k + 1)π it is in
Qk+εk, then duringIk the pendulum doesεk. So it is the same thing to require
that a trajectory of the pendulum realize a particular symbol sequence, and
to require that an orbit of the Poincar´e map visit a particular sequence of
quadrangles, just so long as successive quadrangles be neighbors or identical.

Draw the forward image of that quadrilateral, and observe that it grows
much longer in the unstable direction and shrinks in the stable direction; we
will refer to P(Qk) as thekth snake, Sk. The entire proof comes down to
understanding howSk intersectsQk−1, Qk andQk+1.

The thing to be checked is thatSk intersects all three in subquadrangles
going from top to bottom, and that the top and bottom ofQk map to parts of
the boundary ofSk which are outsideQk−1 ∪ Qk ∪ Qk+1. See Figure 12.5 for
an example of a winning strategy for three adjacent quadrilaterals.

Once you have convinced yourself that this is true, you will see that every
symbolic sequence describing a history of the pendulum is realized by an
intersection of thinner and thinner nested subquadrangles.

A similar argument shows that a symbol describing a future of the pendu-
lum corresponds to a sequence of thinner and thinner subquadrangles going
from left to right. The details are in the C.ODE.E paper in the references.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 12.1.

1. Choose a value forc �= 0.1, takeA = 1 in ODE (1), and produce graphs like
those in the chapter cover figure and Figure 12.1.

2. Choose a value forA �= 1 andc = 0.1 in ODE 1 and produce graphs like those
in the chapter cover figure and Figure 12.1.

3. Choose a value forω �= 1 in the ODE

x′′ + 0.1x′ + sinx = cosωt

and produce graphs like those in the chapter cover figure and Figure 12.1.
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4. Repeat Problems 1 and 2, but for the Duffing ODE,

x′′ + cx′ + x− x3 = Acost

5. Repeat Problems 1 and 2, but for the ODE with a quadratic nonlinearity,

x′′ + cx′ + x− x2 = Acost


