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An aging spring stretches.

Overview Many phenomena, especially those explained by Newton’s Second Law, can be
modeled by second-order linear ODEs with variable coefficients, for example:

1. Robot arms, which are modeled by a spring-mass equation with a time-
varying damping coefficient; and

2. Aging springs, which are modeled by a spring-mass equation with a time-
varying spring constant.

These two applications illustrate very different ways in which series solutions can
be used to solve linear ODEs with nonconstant coefficients.

Key words Infinite series; recurrence formula; ordinary point; singular point; regular singular
point; Bessel’s equations; Bessel functions; aging spring; lengthening pendulum

See also Chapter 4 for second-order linear ODEs with constant coefficients (i.e., without
the time-dependence).
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◆ Infinite Series

Certain second-order linear ODEs with nonconstant coefficients have been
studied extensively, so their properties are well-known. We will look at some
of these ODEs in the chapter.

If the general linear homogeneous (undriven) second-order ODE

x′′ + p(t)x′ + q(t)x = 0 (1)

has coefficients p and q that are not both constants, the methods of Chapter 4
don’t work. However, sometimes we can write a solution x(t) as a power
series:

x(t) =
∞∑

n=0

an(t − t0)
n (2)

where we use ODE (1) to determine the coefficients an. Much useful infor-
mation can be deduced about an ODE when its solutions can be expressed as
power series.

If a function x(t) has a convergent Taylor series x(t) = ∑
an(t − t0)n in☞ Look in your calculus

book for Taylor series. The term
“analytic” is frequently used for
functions with convergent Taylor
Series.

some interval about t = t0, then x(t) is said to be analytic at t0. Since all
derivatives of analytic functions exist, the derivatives x′ and x′′ of x can be
obtained by differentiating that series term by term, producing series with the
same radius of convergence as the series for x. If we substitute these series
into ODE (1), we can determine the coefficients an. To begin with, a0 and a1

are equal to the initial values x(t0) and x′(t0), respectively.

✓ “Check” your understanding by evaluating the series (2) at t = t0 to show
that a0 = x(t0). Now differentiate series (2) term by term to obtain a series for
x′(t); evaluate this series at t0 to find that a1 = x′(t0). Does a2 equal x′′(t0)?

◆ Recurrence Formulas

A recurrence formulafor the coefficients an is a formula that defines each
an in terms of the coefficients a0, a1, . . . , an−1. To find such a formula, we
have to express each of the terms in ODE (1) [i.e., x′′, p(t)x′, and q(t)x] as
power series about t = t0, which is the point at which the initial conditions are
given. Then we combine these series to obtain a single power series which,
according to ODE (1), must sum to zero for all t near t0. This implies that
the coefficient of each power of t − t0 must be equal to zero, which yields an
equation for each an in terms of the preceding coefficients a0, a1, . . . , an−1.
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Example: Finding a recurrence formula
Let’s solve the first-order IVP x′ + tx = 0, x(0) = 1. First we write x(t) in☞ We chose a first-order

ODE for simplicity. the form

x(t) =
∞∑

n=0

antn

where we have chosen t0 = 0. The derivative of x(t) is then

x′(t) =
∞∑

n=1

nantn−1

Substituting this into the given ODE, we get

x′ + tx =
∞∑

n=1

nant
n−1 +

∞∑
n=0

antn+1 = 0

To make the power of t the same in both sums, replace n by n − 2 in the
second sum to obtain

☞ Notice in the second
summation that n starts at 2,
rather than 0. Do you see why?

∞∑
n=1

nantn−1 +
∞∑

n=2

an−2tn−1 = a1 +
∞∑

n=2

[nan + an−2]tn−1 = 0

The last equality is true if and only if a1 = 0 and, if for every n ≥ 2, we have
that nan + an−2 = 0. Therefore, the desired recurrence formula is

an = −an−2

n
, n = 2, 3, . . . (3)

Since a1 = 0, formula (3) shows that the coefficients a3, a5, . . . , a2k+1, . . .

must all be zero; and a2 = −a0/2, a4 = −a2/4 = a0/(2 · 4), . . . . With a
little algebra you can show that the series for x(t) is

x(t) = a0 − a0

2
t2 + a0

2 · 4
t4 − a0

2 · 4 · 6
t6 + · · ·

which can be simplified to

x(t) = a0

(
1 − t2

2
+ 1

2!

(
t2

2

)2

− 1
3!

(
t2

2

)3

+ · · ·
)

If the initial condition a0 = x(0) = 1 is used, this becomes the Taylor Series
for e−t2/2 about t0 = 0. Although the series solution to the IVP, x′ + x = 0,
x(0) = 1, can be written in the form of a familiar function, for most IVPs that
is rarely possible and usually the only form we can obtain is the series form
of the solution.

✓ Check that x(t) = e−t2/2 is a solution of the IVP x′ + tx = 0, x(0) = 1.
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◆ Ordinary Points

If p(t) and q(t) are both analytic at t0, then t0 is called an ordinary point
for the differential equation x′′(t) + p(t)x′(t) + q(t)x(t) = 0. At an ordinary
point, the method illustrated in the preceding example always produces solu-
tions written in series form. The following theorem states this more precisely.

Ordinary Points Theorem. If t0 is an ordinary point of the second-
order differential equation

x′′ + p(t)x′ + q(t)x = 0 (4)

that is, if p(t) and q(t) are both analytic at t0, then the general solution
of ODE (4) is given by the series

x(t) =
∞∑

n=0

an(t − t0)
n = a0x1(t) + a1x2(t) (5)

where a0 and a1 are arbitrary and, for each n ≥ 2, an can be written in
terms of a0 and a1. When this is done, we get the right-hand term in
formula (5), where x1(t) and x2(t) are linearly independent solutions
of ODE (4) that are analytic at t0. Further, the radius of convergence
for each of the series solutions x1(t) and x2(t) is at least as large as the
smaller of the two radii of convergence for the series for p(t) and q(t).

One goal of Module 11 is to give you a feeling for the interplay between
infinite series and the functions they represent. In the first submodule, the
position x(t) of a robot arm is modeled by the second-order linear ODE

☞ Note that p(t) = Ct and
q(t) = k are analytic for all t.

x′′ + Ctx′ + kx= 0 (6)

where C and k are positive constants. Using the methods of the earlier exam-
ple, we can derive a series solution (with t0 = 0)

x(t) = 1 − kt2

2!
+ k(2C+ k)t4

4!
− k(2C + k)(4C+ k)t6

6!
+ · · · (7)

that satisfies x(0) = 1, x′(0) = 0. We then have to to determine how quickly
the arm can be driven from the position x = 1 to x = 0.005 without letting
x go below zero. The value of k is fixed at 9, so that only C is free to vary.
When C = k, it turns out that series (7) is the Taylor series for e−kt2/2 about
t = 0. It can then be demonstrated numerically, using ODE Architect, that
C = 9 produces a solution that stays positive and is an optimal solution in the
sense of requiring the least time for the value of x to drop from 1 to 0.005.

In the majority of cases, however, it is notpossible to recognize the series

☞ Historically, new functions
in engineering, science, and
mathematics have often been
introduced in the form of series
solutions of ODEs. solution as one of the standard functions of calculus. Then the only way to

approximate x(t) at a given value of t is by summing a large number of terms
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Figure 11.1: Solutions of ODE (6) for k = 9, x(0) = 1, x′(0) = 0, and C = 0, 3, 6,
9, 12, 15. Which is the C = 15 curve?.

in the series, or by using a numerical solver to solve the corresponding IVP.
ODE Architect was used to graph solutions of ODE (6) for several values of
C (Figure 11.1).

What if t0 is not an ordinary point for the ODE,x′′ + p(t)x′ + q(t)x = 0,
that is, what if p(t) or q(t) is not analytic att0? For example, in the ODE
x′′ + x/(t − 1) = 0, q(t) is not analytic att0 = 1. Such a point is said to be
a singular pointof the ODE. For example,t0 = 1 is a singular point for the
ODE x′′ + x/(t − 1) = 0. Next we show how to deal with ODEs with certain
kinds of singular points.

✓ Is t = 0 an ordinary point or a singular point ofx′′ + t2x = 0? What about
x′′ + (sint)x = 0 andx′′ + x/t = 0?

◆ Regular Singular Points

A singular point of the ODEx′′(t) + p(t)x′(t) + q(t)x(t) = 0 is a regular
singular pointif both (t − t0)p(t) and(t − t0)2q(t) are analytic att0. In this
case we’ll have to modify the method to find a series solution to the ODE.

✓ Is t = 0 a regular singular point ofx′′ + x′/t + x = 0? What about
x′′ + x′ + x/t2 = 0 andx′′ + x′ + x/t3 = 0?
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Since(t − t0)p(t) and (t − t0)2q(t) are analytic att0, they have power
series expansions centered att0:

(t − t0)p(t) = P0 + P1(t − t0) + P2(t − t0)
2 + · · ·

(t − t0)
2q(t) = Q0 + Q1(t − t0) + Q2(t − t0)

2 + · · ·
As we shall soon see, the constant coefficients,P0 andQ0, in these two series
are particularly important. The roots of the quadratic equation (called the
indicial equation)

r (r − 1) + P0r + Q0 = 0 (8)

are used in solution formula (9) below.☞ Assume that the roots of
the indicial equation are real
numbers.

A theorem due to Frobenius tells us how to modify our original method
of constructing power series solutions so that we can obtain series solutions
near regular singular points.

Frobenius’ Theorem. If t0 is a regular singular point of the second-
order differential equationx′′(t) + p(t)x′(t) + q(t)x(t) = 0, then there
is at least one series solution att0 of the form

x1(t) = (t − t0)
r1

∞∑
n=0

an(t − t0)
n =

∞∑
n=0

an(t − t0)
n+r1 (9)

wherer1 is the larger of the two rootsr1 andr2 of the indicial equation.

☞ The second summation is
called theFrobenius series.

The coefficientsan can be determined in the same way as in the earlier☞ Consult the references for
detailed instructions on how to
find the coefficientsan.

example: differentiate twice, substitute the series forqx1, px′
1 andx′′

1 into the
given differential equation, and then find a recurrence formula.

Here are a few things to keep in mind when finding a Frobenius series.

1. The roots of the indicial equation may not be integers, in which case the
series representation of the solution would not be a power series, but is
still a valid series.

2. If r1 − r2 is not an integer, then the smaller rootr2 of the indicial equa-
tion generates a second solution of the form

x2(t) = (t − t0)
r2

∞∑
n=0

bn(t − t0)
n

which is linearly independent of the first solutionx1(t).
3. Whenr1 − r2 is an integer, a second solution of the form

x2(t) = Cx1(t) ln(t − t0) +
∞∑

n=0

bn(t − t0)
n+r2

exists, where the values of the coefficentsbn are determined by finding
a recurrence formula, andC is a constant. The solutionx2(t) is linearly
independent ofx1(t).
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◆ Bessel Functions

For any nonnegative constantp, the differential equation

t2x′′(t) + tx′(t) + (t2 − p2)x(t) = 0

is known asBessel’s equation of order p, and its solutions are theBessel
functions of order p. In normalized form, Bessel’s equation becomes

☞ If t is very large, Bessel’s
equation looks like the harmonic
oscillator equation,x′′ + x = 0.

x′′(t) + 1
t
x′(t) +

(
t2 − p2

t2

)
x(t) = 0

From this we can see thattp(t) = 1 andt2q(t) = t2 − p2, so thattp(t) and
t2q(t) are analytic att0 = 0. Therefore zero is a regular singular point and,
using equation (8), we find that the indicial equation is

r (r − 1) + r − p2 = r2 − p2 = 0

Application of Frobenius’ Theorem yields a solutionJp given by the formula

☞ The roots of the indicial
equation are arep and−p.

Jp(t) = t p
∞∑

n=0

(−1)n

22nn!(p+ 1)(p+ 2) · · · (p+ n)
t2n

The functionJp(t) is called theBessel function of order p of the first kind.

☞ Consult the references for
the derivation of the formula for
Jp(t).

The series converges and is bounded for allt. If p is not an integer, it can
be shown that a second solution of Bessel’s equation isJ−p(t) and that the
general solution of Bessel’s equation is a linear combination ofJp(t) and
J−p(t).

For the special casep = 0, we get the functionJ0(t) used in the aging
spring model in the second submodule of Module 11:

J0(t) =
∞∑

n=0

(−1)n

(n!)2

( t
2

)2n
= 1− t2

4
+ t4

64
− t6

2304
+ · · ·

Note that even thought = 0 is a singular point of the Bessel equation of order
zero, the value ofJ0(0) is finite [J0(0) = 1]. See Figure 11.2.

✓ Check thatJ0(t) is a solution of Bessel’s equation of order 0.

When p is an integer we have to work much harder to get a second solu-
tion that is linearly independent ofJp(t). The result is a functionYp(t) called
the Bessel function of order p of the second kind. The general formula for
Yp(t) is extremely complicated. We show only the special caseY0(t), used in
the aging spring model:

Y0(t) = 2
π

[(
γ + ln

t
2

)
J0(t) +

∞∑
n=0

(−1)n+1Hn

(n!)2

( t
2

)2n
]

whereHn = 1+ (1/2) + (1/3) + · · · + (1/n) andγ is Euler’s constant: γ =
☞ Actually γ is an unending
decimal (or so most
mathematicians believe), and
0.5772 gives the first four digits. limn→∞(Hn − ln n) ≈ 0.5772.
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Figure 11.2: The graph of J0(t) [dark] looks like the graph of the decaying
sinusoid

√
2/πt cos(t − π/4) [light].

The general solution of Bessel’s equation of integer orderp is

x(t) = c1Jp(t) + c2Yp(t) (10)

for arbitrary constantsc1 andc2. An important thing to note here is that the
value ofYp(t) at t = 0 doesreflect the singularity att = 0; in fact,Yp(t) →
−∞ as t → 0+, so that a solution having the form given in (10) is bounded
only if c2 = 0.

Bessel functions appear frequently in applications involving cylindrical
geometry and have been extensively studied. In fact, except for the functions
you studied in calculus, Bessel functions are the most widely used functions
in science and engineering.

◆ Transforming Bessel’s Equation to the Aging Spring Equation

Bessel’s equation of order zero can be transformed into the aging spring equa-☞ See “Aging Springs” in
Module 11. tion x′′ + e−atx = 0. To do this, we take

t = (2/a) ln(2/as) (11)

where the new independent variables is assumed to be positive. Then we can
use the chain rule to find the first two derivatives of the displacementx of the
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aging spring with respect tos:

dx
ds

= dx
dt

dt
ds

= dx
dt

(
− 2

as

)

d2x
ds2

= d
ds

[
dx
dt

(
− 2

as

)]
+ dx

dt
d
ds

(
− 2

as

)

= d2x
dt2

dt
ds

(
− 2

as

)
+ dx

dt
2

as2

= d2x
dt2

(
− 2

as

)(
− 2

as

)
+ dx

dt
2

as2

= d2x
dt2

4
(as)2

+ dx
dt

2
as2

Bessel’s equation of orderp = 0 is given by:☞ We usew in place ofx in
the aging spring section of
Module 11. s2 d2x

ds2 + s
dx
ds

+ s2x = 0

and when we substitute in the derivatives we just found, we obtain

s2

(
d2x
dt2

4
(as)2

+ dx
dt

2
as2

)
+ s

dx
dt

(
− 2

as

)
+ s2x = 0

Using the fact that

s= (2/a)e−at/2 (12)

(found by solving equation (11) fors) in the last term, when we simplify this
monster equation it collapses down to a nice simple one:

d2x
dt2

4
a2

+ 4
a2

e−atx = 0

Finally, if we divide through by 4/a2, we get the aging spring equation,
x′′ + e−atx = 0.

The other way around works as well, that is, a change of variables will
convert the aging spring equation to Bessel’s equation of order zero. That
means that solutions of the aging spring equation can be expressed in terms of
Bessel functions. This can be accomplished by usingx = c1J0(s) + c2Y0(s)
as the general solution of Bessel’s equation of order 0, and then using for-
mula (12) to replaces. Take another look as Experiments 3 and 4 on Screens 2.5
and 2.6 of Module 11. That will give you a graphical sense about the connec-
tion between aging springs and a Bessel’s equation.

References Borrelli, R. L., and Coleman, C. S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. C.,Elementary Differential Equations and
Boundary Value Problems, 6th ed., (1997: John Wiley & Sons, Inc.)
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Figure 11.3: Here are some typical graphs for the solution of x′′ + C2t2x′ +
9x = 0 for various values of C2. The graphs and the data tables are useful in
Problem 1 of Exploration 11.1.

Figure 11.4: Here is a phase-plane portrait for an aging spring ODE, x′′ +
e−t x = −9.8. See “Modeling an Aging Spring” in the library folder “Physical
Models” and also Problem 1 in Exploration 11.3.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 11.1. Damping a Robot Arm

In each of the following problems it is assumed that the displacement x of a
robot arm satisfies an IVP of the form

x′′ + b(t)x′ + 9x = 0, x(0) = 1, x′(0) = 0

An optimal damping function b(t) is one for which the solution x(t) reaches
0.005 in minimal time t∗ without ever going below zero.

1. Consider damping functions of the formb(t) = Cktk. For a positive integer
k, let C∗

k be the value ofCk that gives the optimal solution, and denote the
corresponding minimal time byt∗k. In Module 11, Screen 1.4 and TTA 3 on
Screen 1.7 you found that the optimal solution fork = 1 is x(t) = e−9t2/2, with
C∗

1 = 9 andt∗1 ≈ 1.0897.

(a) Use ODE Architect to find an approximate optimal solution and values
of C∗

k andt∗k whenk = 2. [Suggestion:Look at Figure 11.3.]

(b) Repeat withk = 3.

(c) Compare the optimal damping functions fork = 1, 2, 3, in the context
of the given physical process.

2. For quadratic damping, b(t) = C2t2, derive a power series solutionx(t) =∑∞
n=0 antn. Show that the recurrence formula for the coefficients is

an+2 = −[9an + C2(n− 1)an−1]
(n+ 1)(n+ 2)

, n ≥ 1

anda2 = −9a0/2. Recall thata0 = x(0) anda1 = x′(0).
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3. Let P6(t) be the Taylor polynomial
∑6

n=0 antn, where thean are given by the
recurrence formula in Problem 2.

(a) Write out P6(t) with C2 as a parameter; briefly describe how the graph
of P6(t) changes asC2 increases.

(b) Graph the apparently optimal solution from Problem 1(a) over the in-☞ You will need results from
Problem 1(a) here. terval 0≤ t ≤ t∗2 and compare it to the graph ofP6(t) with C2 = C∗

2.

4. If the robot arm is totally undamped, its position at timet is x(t) = cos3t;
therefore the arm cannot reachx = 0 for all t, 0 ≤ t ≤ π/6. In this situation
the undamped arm can’t remain abovex = 0. The optimal damping func-
tions C∗

k tk found in Problem 1 look more like step functions as the degreek
increases. Try to improve the timet∗ by using a step function for damping.

Assume the robot arm is allowed to fall without damping until just before
it reachesx = 0, at which time a constant damping force is applied. This
situation can be modeled by defining

b(t) =
{

0 for 0≤ t < π
6 − ε

Bε for t ≥ π
6 − ε

for ε = 0.2, 0.1, and 0.05. Use ODE Architect to find values ofBε that give
an approximate optimal solution. Include a graph showing your best solution
for eachε and give your best value oft∗ in each case. What happens to the
“optimal” Bε asε → 0?

5. Find a formula for the solution for the situation in Problem 4. The value ofε

should be treated as a parameter. Assume thatx(t) = cos3t for t < (π/6)− ε.
Then the IVP to be solved is

x′′ + Bεx
′ + 9x = 0

x(π/6− ε) = cos[3( π
6 − ε)] = sin3ε

x′(π/6− ε) = −3sin[3( π
6 − ε)] = −3cos3ε

The solution will be of the formx(t) = c1er1t + c2er2t, r1 < r2 < 0, but the
optimal solution requires thatc2 = 0. Why? For a fixedε, find the value of
Bε so thatx(t) remains positive and reaches 0.005 in minimum time.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 11.2. Bessel Functions

1. Bessel functions resemble decaying sinusoids. Let’s compare the graph of
J0(t) with that of one of these sinusoids.

(a) On the same set of axes, graph the Bessel functionJ0(t) and the function√
2
πt

cos
(

t − π

4

)

over the interval 0≤ t ≤ 10.

(b) Now graph these same two functions over the interval 0≤ t ≤ 50.

(c) Describe what you see.

[Suggestion:You can use ODE Architect to plot a good approximation of
J0(t) by solving an IVP involving Bessel’s equation in system form:

x′ = y, y′ = −x− y/t, x(t0) = 1, x′(t0) = 0

with t0 = 0.0001. Actually,J0(0) = 1 andJ′
0(0) = 0, butt0 = 0 is a singular

point of the system so we must move slightly away from zero. You can plot the

decaying sinusoid on the same axes asJ0(t) by enteringa =
√

2
πt cos(t − π

4 )

in the same equation window as the IVP, selecting a custom 2D plot, and
plotting botha andx vs. t.]
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2. Repeat Problem 1 for the functionsY0(t) and
√

2
πt sin

(
t − π

4

)
. To graph a

good approximation ofY0(t), solve the system equivalent of Bessel’s equation
of order zero (from Problem 1) with initial datat0 = 0.89357, x(t0) = 0,
x′(t0) = 0.87942. As in Problem 1, we have to avoid the singularity att0 = 0,
especially here becauseY0(0) = −∞. The given initial data are taken from
published values of Bessel functions and their derivatives.
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Exploration 11.3. Aging Spring Models

1. Check out the Library file “Modeling an Aging Spring” in the “Physical Mod-
els” folder (see Figure 11.4). The ODE in the file models the motion of a
vertically suspended damped and aging spring that is subject to gravity. Carry
out the suggested explorations.

2. Show that

x(t) =
√

t + 1
3

sin

(√
3

2
ln(t + 1)

)
− √

t + 1cos

(√
3

2
ln(t + 1)

)

is an analytic solution of the initial value problem

x′′(t) + x(t)
(t + 1)2

= 0, x(0) = −1, x′(0) = 0

Explain why this IVP provides another model for the motion of an aging
spring that is sliding back and forth (without damping) on a support table.
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3. Graph the solutionx(t) from Problem 2 over the interval 0≤ x ≤ 10 and
compare the graph to the one obtained in Module 11 using ODE Architect.



Id: chapter11.tex,v 1.10 1998-06-30 01:54:05-07 drichard Exp ODE Architect Workbook Page 219 on June 30, 1998 at 3:06

Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 11.4. The Incredible Lengthening Pendulum

Suppose that we have an undamped pendulum whose length L = a + bt in-
creases linearly over time. Then the ODE that models the motion of this
pendulum is☞ The ODE for a

pendulum of varying length
is derived in Chapter 10. (a+ bt)θ′′(t) + 2bθ′(t) + gθ(t) = 0 (13)

where θ is small enough that sinθ ≈ θ, the mass of the pendulum bob is 1,
and the value of the acceleration due to gravity is g = 32.1

1. With a = b = 1 and initial conditionsθ(0) = 1 andθ′(0) = 0, use ODE Ar-
chitect to solve ODE (13) numerically. What happens toθ(t) ast → +∞?

2. Under the same conditions, what happens to the oscillation time of the pen-
dulum ast → +∞? (The oscillation time is the time between successive
maxima ofθ(t).)

1See the article “Poe’s Pendulum” by Borrelli, Coleman, and Hobson inMathematics Magazine,
Vol. 58 (1985) No. 2, pp. 78–83. See also “Child on a Swing” in Module 10.
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3. Show that the change of variables

s= (2/b)
√

(a+ bt)g, x = θ
√

a+ bt

transforms Bessel’s equation of order 1

s2 d2x
ds2

+ s
dx
ds

+ (s2 − 1)x = 0

into ODE (13) for the lengthening pendulum. [Suggestion:Take a look at the
section “Transforming Bessel’s Equation to the Aging Spring Equation” in
this chapter to help you get started. Use the change of variables given above
to express the solution of the IVP in Problem 1 using Bessel functions.]
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