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Many phenomena, especially those explained by Newton’s Second Law, can be
modeled by second-order linear ODEs with variable coefficients, for example:

1. Robot arms, which are modeled by a spring-mass equation with a time-
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An aging spring stretches.

varying damping coefficient; and

2. Agi

ng springs, which are modeled by a spring-mass equation with a time-

varying spring constant.

These two applications illustrate very different ways in which series solutions can

be used to solve linear ODEs with nonconstant coefficients.

Infinite series; recurrence formula; ordinary point; singular point; regular singular
point; Bessel’s equations; Bessel functions; aging spring; lengthening pendulum

Chapter 4 for second-order linear ODEs with constant coefficients (i.e., without

the time-dependence).
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[ Infinite Series

D Look inyour calculus
book for Taylor series. Theterm
“analytic” isfrequently used for
functions with convergent Taylor
Series.

Certain second-order linear ODEs with nonconstant coefficients have been
studied extensively, so their properties are well-known. We will look at some
of these ODEs in the chapter.

If the general linear homogeneous (undriven) second-order ODE

X"+ p(t)X +q(t)x=0 (D

has coefficients p and g that are not both constants, the methods of Chapter 4
don't work. However, sometimes we can write a solution X(t) as a power
series:

X(t) =) an(t—to)" @)
n=0

where we use ODE (1) to determine the coefficients a,. Much useful infor-
mation can be deduced about an ODE when its solutions can be expressed as
power series.

If afunction x(t) has a convergent Taylor series x(t) = Y _an(t —to)" in
some interval about t = to, then x(t) is said to be analyticat to. Since all
derivatives of analytic functions exist, the derivatives X' and x” of x can be
obtained by differentiating that seriesterm by term, producing series with the
same radius of convergence as the series for x. If we substitute these series
into ODE (1), we can determine the coefficients a,. To begin with, ag and a;
are equal to theinitial values x(tp) and X' (tg), respectively.

O “Check” your understanding by evaluating the series (2) at t = to to show
that ag = X(tp). Now differentiate series (2) term by term to obtain aseriesfor
X (t); evaluate this series at to to find that a3 = X'(tp). Does a, equal x” (tp)?

[ Recurrence Formulas

A recurrence formuldor the coefficients a, is a formula that defines each
a, in terms of the coefficients ag, a4, ..., an—1. To find such a formula, we
have to express each of the termsin ODE (1) [i.e., X, p(t)X, and q(t)x] as
power seriesabout t = tg, which isthe point at which theinitial conditionsare
given. Then we combine these series to obtain a single power series which,
according to ODE (1), must sum to zero for all t near to. Thisimplies that
the coefficient of each power of t — to must be equal to zero, which yields an
equation for each a,, in terms of the preceding coefficients ag, ay, ... , an_1.
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|:| We chose afirst-order
ODE for simplicity.

|:| Notice in the second
summation that n starts at 2,
rather than 0. Do you see why?

Example: Finding a recurrence formula
Let's solve the first-order IVP X' +tx =0, Xx(0) = 1. First we write x(t) in
theform

o0
X(t) = Z ant"
n=0

where we have chosen tg = 0. The derivative of x(t) isthen
X(1) = nat"*
n=1
Substituting this into the given ODE, we get
oo o
X +tx = Z nat" 1+ Z at"l=0
n=1 n=0

To make the power of t the same in both sums, replace n by n — 2 in the
second sum to obtain

o0 o0 o0
D nat™ 4+ e o™t =ar+ ) [nag+anJt" =0
n=1 n=2 n=2

The last equality istrueif and only if a; = O and, if for every n > 2, we have
that na, + an_» = 0. Therefore, the desired recurrence formulais

—an-2

a”:T’ n=23,... 3
Since a; = 0, formula (3) shows that the coefficients ag, as, ..., axi1, ...
must al be zero; and a; = —ap/2, au = —ax/4=ap/(2-4),.... Witha
little algebra you can show that the seriesfor x(t) is

X(t) = ag— g2y 04 &

6 ...
2 2-4 2-4-6t +

which can be simplified to

2 1/2\° 1/t2\°
X(t):a0<1_§+ﬁ<§> _§<E> +---
If theinitial condition ag = x(0) = 1 is used, this becomes the Taylor Series
for e~**/2 about t = 0. Although the series solution to the IVE, X' + x = 0,
X(0) = 1, can be written in the form of afamiliar function, for most 1V Ps that

is rarely possible and usually the only form we can obtain is the series form
of the solution.

[0 Check that x(t) = e /2 isasolution of the IVP X + tx = 0, Xx(0) = 1.
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[0 Ordinary Points

D Note that p(t) = Ctand
q(t) = k are analytic for all t.

D Historically, new functions
in engineering, science, and
mathematics have often been
introduced in the form of series
solutions of ODEs.

If p(t) and q(t) are both analytic at tg, then tg is called an ordinary point
for the differential equation x”(t) + p(t)X (t) + q(t)x(t) = 0. At an ordinary
point, the method illustrated in the preceding example always produces solu-
tionswritten in seriesform. The following theorem states this more precisely.

Ordinary Points Theorem. If ty is an ordinary point of the second-
order differential equation

X"+ pt)X +qt)x=0 4

that is, if p(t) and q(t) are both analytic at ty, then the general solution
of ODE (4) is given by the series

X(1) = an(t — to)" = agxe(t) + axa() (5)
n=0

where ag and a; are arbitrary and, for each n > 2, a, can be written in
terms of ag and a;. When this is done, we get the right-hand term in
formula (5), where x;(t) and x,(t) are linearly independent solutions
of ODE (4) that are analytic at ty. Further, the radius of convergence
for each of the series solutions x; (t) and X, (t) is at least as large as the
smaller of the two radii of convergencefor the seriesfor p(t) and q(t).

One goal of Module 11 isto give you afeeling for the interplay between
infinite series and the functions they represent. In the first submodule, the
position x(t) of arobot arm is modeled by the second-order linear ODE

X'+ CtX +kx=0 (6)

where C and k are positive constants. Using the methods of the earlier exam-
ple, we can derive a series solution (with to = 0)
kt?  k(2C+Kt*  Kk(2C + k) (4C + k)t6
that satisfies x(0) = 1, x'(0) = 0. We then have to to determine how quickly
the arm can be driven from the position x = 1 to x = 0.005 without letting
X go below zero. The value of k isfixed at 9, so that only C is free to vary.
When C =k, it turns out that series (7) is the Taylor series for e /2 ahout
t = 0. It can then be demonstrated numerically, using ODE Architect, that
C = 9 produces a solution that stays positive and is an optimal solution in the
sense of requiring the least time for the value of x to drop from 1 to 0.005.
In the mgjority of cases, however, it is not possible to recognize the series
solution as one of the standard functions of calculus. Then the only way to
approximate x(t) at agiven value of t is by summing alarge number of terms
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Figure 11.1: Solutions of ODE (6) for k=9, x(0) =1, X(0) =0,and C=0, 3, 6,
9, 12, 15. Which is the C = 15 curve?.

in the series, or by using a numerical solver to solve the corresponding IVP.
ODE Architect was used to graph solutions of ODE (6) for several values of
C (Figure 11.12).

What if tg is notan ordinary point for the ODEx” + p(t)X + q(t)x= 0,
that is, what if p(t) or g(t) is not analytic aty? For example, in the ODE
X"+ x/(t—1) =0, q(t) is not analytic ato = 1. Such a point is said to be
a singular pointof the ODE. For exampleg = 1 is a singular point for the
ODE X’ + x/(t — 1) = 0. Next we show how to deal with ODEs with certain
kinds of singular points.

0 Ist=0an ordinary point or a singular point®f + t>x = 0? What about
X"+ (sint)x =0 andx” + x/t = 0?

[0 Regular Singular Points

A singular point of the ODEX"(t) + p(t)X'(t) 4+ q(t)x(t) = 0 is aregular
singular pointif both (t — to) p(t) and(t — to)2q(t) are analytic ato. In this
case we'll have to modify the method to find a series solution to the ODE.

O Ist =0 a regular singular point of” 4+ X'/t + x = 0? What about
X"+ X 4+ x/t? =0andx’ + x + x/t3=0?
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D Assume that the roots of
the indicial equation are real
numbers.

D The second summation is
called theFrobenius series

D Consult the references for

detailed instructions on how to
find the coefficients,.

Since (t — to) p(t) and (t — tg)2q(t) are analytic aty, they have power
series expansions centeredat

(t—to) p(t) = Po+ Pi(t —to) + Pa(t — to)? + - --
(t—t0)%q(t) = Qo+ Qu(t — to) + Qa(t — tg)? + - --

As we shall soon see, the constant coefficieR§sand Qg, in these two series
are particularly important. The roots of the quadratic equation (called the
indicial equation
rr—1)+Pr+ Q=0 (8)
are used in solution formula (9) below.
A theorem due to Frobenius tells us how to modify our original method

of constructing power series solutions so that we can obtain series solutions
near regular singular points.

Frobenius Theorem. If ty is a regular singular point of the secondt
order differential equatior’ (t) + p(t)X (t) + q(t)x(t) = 0, then there
is at least one series solutiontabf the form

X1(t) = (t— tO)rl Z an(t— tO)n — Z an(t — to)n+rl (9)
n=0 n=0

wherer is the larger of the two roots andr, of the indicial equation.

The coefficients, can be determined in the same way as in the earlier
example: differentiate twice, substitute the seriesyfar px; andx] into the
given differential equation, and then find a recurrence formula.

Here are a few things to keep in mind when finding a Frobenius series.

1. The roots of the indicial equation may not be integers, in which case the
series representation of the solution would not be a power series, but is
still a valid series.

2. If ry —ry is not an integer, then the smaller ragtof the indicial equa-
tion generates a second solution of the form

Xo(t) = (t—19)™ > "bn(t —to)"
n=0

which is linearly independent of the first solutigpn(t).
3. Whenr; —r; is an integer, a second solution of the form

o
Xa(t) = Cxa (D) IN(t —to) + »_bn(t —tg)™"
n=0
exists, where the values of the coefficelntsare determined by finding
a recurrence formula, ar@is a constant. The solution(t) is linearly
independent ok, (t).
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[1 Bessel Functions

|:| If tis very large, Bessel's
equation looks like the harmonic
oscillator equationx’ + x = 0.

|:| The roots of the indicial
equation are ar@ and—p.

|:| Consult the references for
the derivation of the formula for

Jp(D).

|:| Actually y is an unending
decimal (or so most
mathematicians believe), and
0.5772 gives the first four digits.

For any nonnegative constaptthe differential equation
22X (t) + tX (1) + (1> — pP)x(t) =0

is known asBessel's equation of order, @nd its solutions are thBessel
functions of order pln normalized form, Bessel’s equation becomes

X (1) + %x’(t) " ( > P )x(t) _

From this we can see thgn(t) = 1 andt?q(t) = t> — p?, so thattp(t) and
t2q(t) are analytic aty = 0. Therefore zero is a regular singular point and,
using equation (8), we find that the indicial equation is

rc—1)+r—p?>=r2—p?>=0
Application of Frobenius’ Theorem yields a solutidpgiven by the formula

(=" 2
_ pE "
PO=CL o Dpr2(prm

The functionJy(t) is called theBessel function of order p of the first kind
The series converges and is bounded fott.allf p is not an integer, it can
be shown that a second solution of Bessel's equatiah jgt) and that the
general solution of Bessel's equation is a linear combinatiod4f) and
J_p(D).

For the special casp = 0, we get the functiordy(t) used in the aging
spring model in the second submodule of Module 11.:

t4

B ( 1)n B t2 tG
Jo(t) = ;0 (2 (—> —l——-f-&—m—f'

Note that even though= 0 is a singular point of the Bessel equation of order
zero, the value 08y (0) is finite [Jo(0) = 1]. See Figure 11.2.

O Check thatly(t) is a solution of Bessel's equation of order O.

When p is an integer we have to work much harder to get a second solu-
tion that is linearly independent df,(t). The result is a functiol¥(t) called
the Bessel function of order p of the second kirthe general formula for
Yp(t) is extremely complicated. We show only the special ¢age), used in
the aging spring model:

Yo(t):§|:(V+|n%>J(t)+Z( :I(':]T;:H ( ) i|

whereH, =1+ (1/2) 4+ (1/3) +--- 4+ (1/n) andy is Euler's constanty =
liMpsoo(Hy—InN) =~ 0.5772.
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Figure 11.2: The graph of Jy(t) [dark] looks like the graph of the decaying
sinusoid 4/2/xtcoqt — 7/4) [light].

The general solution of Bessel's equation of integer oplisr
X(t) = c1Jp(t) + C2Yp (1) (10)

for arbitrary constants; andc,. An important thing to note here is that the
value ofY(t) att = O doesreflect the singularity at = O; in fact, Y,(t) —
—oo ast — 0T, so that a solution having the form given in (10) is bounded
onlyif c, =0.

Bessel functions appear frequently in applications involving cylindrical
geometry and have been extensively studied. In fact, except for the functions
you studied in calculus, Bessel functions are the most widely used functions
in science and engineering.

[0 Transforming Bessel’s Equation to the Aging Spring Equation

[] see“Aging Springs” in Bessel's equation of order zero can be transformed into the aging spring equa-
Module 11. tion X’ 4+ e x = 0. To do this, we take

t=(2/a)In(2/as) (12)

where the new independent variablis assumed to be positive. Then we can
use the chain rule to find the first two derivatives of the displacemehthe
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aging spring with respect ®
dx _dxdt _dx( 2
ds dtds dt\ as
¢x _dfde 2)] dxd( 2
d®  ds|dt\ as dtds\ as
_dxdi( 2) dx2
~ di2ds\ as/ dtag
_dx( 2\ ( 2\ dx2
Cde2 \ as as) dtag
_Px 4 dx2
T dt?2 (as)?2  dtag
|:| We usew in place ofxin ~ Bessel's equation of ordgr= 0 is given by:
the aging spring section of d2x dx
Module 11. _
szd82 +sds+szx_0
and when we substitute in the derivatives we just found, we obtain
d’°x 4 dx 2 dx/ 2
32 (W_(aS)z + ag) +Sa <_a_s> +32X— 0
Using the fact that
s= (2/a)e V2 (12)

References

(found by solving equation (11) f@) in the last term, when we simplify this
monster equation it collapses down to a nice simple one:

d’°x 4 4

W? + ?e aly =0
Finally, if we divide through by 4a, we get the aging spring equation,
X' +e 3 =0.

The other way around works as well, that is, a change of variables will
convert the aging spring equation to Bessel's equation of order zero. That
means that solutions of the aging spring equation can be expressed in terms of
Bessel functions. This can be accomplished by usiagc; Jo(s) + C2Yo(S)
as the general solution of Bessel's equation of order 0, and then using for-
mula (12) to replace. Take another look as Experiments 3 and 4 on Screens 2.5
and 2.6 of Module 11. That will give you a graphical sense about the connec-
tion between aging springs and a Bessel's equation.

Borrelli, R. L., and Coleman, C. Rifferential Equations: A Modeling Per-
spective (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. CElementary Differential Equations and
Boundary Value Problemsth ed., (1997: John Wiley & Sons, Inc.)
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Figure 11.3: Here are some typical graphs for the solution of x’ + Cyt?x' +
9x = 0 for various values of C,. The graphs and the data tables are useful in
Problem 1 of Exploration 11.1.
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Figure 11.4: Here is a phase-plane portrait for an aging spring ODE, X’ +
e'x = —9.8. See “Modeling an Aging Spring” in the library folder “Physical
Models” and also Problem 1 in Exploration 11.3.
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Exploration 11.1. Damping a Robot Arm

In each of the following problems it is assumed that the displacement x of a
robot arm satisfies an IVP of the form

X'+b®)X+9x=0, x(0=1 x(0)=0

An optimal damping function b(t) is one for which the solution x(t) reaches
0.005 in minimal time t* without ever going below zero.

1. Consider damping functions of the foriit) = Cyt. For a positive integer
k, let C; be the value ofCy that gives the optimal solution, and denote the
corresponding minimal time btf. In Module 11, Screen 1.4 and TTA 3 on
Screen 1.7 you found that the optimal solutionket 1 is x(t) = e~%/2, with
C; =9 andt; ~ 1.0897.

(@) Use ODE Architect to find an approximate optimal solution and values
of C; andt} whenk = 2. [SuggestionLook at Figure 11.3.]

(b) Repeat withk = 3.

(c) Compare the optimal damping functions fo& 1, 2, 3, in the context
of the given physical process.

2. For quadratic dampingb(t) = C,t?, derive a power series solutiofit) =
> oo ant". Show that the recurrence formula for the coefficients is
By = —[9a, 4+ Co(n— Dan_1] Con=1
(n+1(n+2)

anda, = —9ay/2. Recall thaby = x(0) anda; = x'(0).
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3. Let Ps(t) be the Taylor ponnomiaEﬁ:O ant", where thea,, are given by the
recurrence formula in Problem 2.

(@) Write out Ps(t) with C, as a parameter; briefly describe how the graph
of Ps(t) changes a€; increases.

[[] Youwill need resuits from  (b) Graph the apparently optimal solution from Problem 1(a) over the in-
Problem 1(a) here. terval 0< t <t} and compare it to the graph &(t) with C, = C;.

4. If the robot arm is totally undamped, its position at timis X(t) = cos 3;
therefore the arm cannot reaxh= 0 for allt, 0 < t < /6. In this situation
the undamped arm can’t remain above- 0. The optimal damping func-
tions C;:tk found in Problem 1 look more like step functions as the degree
increases. Try to improve the tinteby using a step function for damping.

Assume the robot arm is allowed to fall without damping until just before
it reachesx = 0, at which time a constant damping force is applied. This
situation can be modeled by defining

b(t) = {

fore = 0.2, 0.1, and 0.05. Use ODE Architect to find valuesBpfthat give

an approximate optimal solution. Include a graph showing your best solution
for eache and give your best value of in each case. What happens to the
“optimal” B, ase — 0?

0 forO<t<g-—e
B. fort>%—¢

5.  Find a formula for the solution for the situation in Problem 4. The value of
should be treated as a parameter. Assumexittat= cos 3 fort < (r/6) — e.
Then the IVP to be solved is

X'+ BX +9%=0
X(/6—¢) = cos[A§ —e)] =sin3k
X (/6 —¢) = —3sin[3(§ — )] = —3cos 3

The solution will be of the formx(t) = ci€ + c,€?, r1 < ry < 0, but the
optimal solution requires that = 0. Why? For a fixed, find the value of
B. so thatx(t) remains positive and reaches 0.005 in minimum time.
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Exploration 11.2.

Bessel Functions

Bessel functions resemble decaying sinusoids. Let's compare the graph of
Jo(t) with that of one of these sinusoids.

(@) Onthe same set of axes, graph the Bessel fundijén and the function

\/g cos(t— 2)

over the interval < t < 10.

(b) Now graph these same two functions over the intervaltO< 50.

(c) Describe what you see.
[Suggestion:You can use ODE Architect to plot a good approximation of
Jo(t) by solving an IVP involving Bessel's equation in system form:

X=y, Y=-x=y/t, X(t)) =1, X(to) =0

with to = 0.0001. Actually,Jo(0) = 1 andJy(0) = 0, butty = 0 is a singular
point of the system so we must move slightly away from zero. You can plot the
decaying sinusoid on the same axesgd) by enteringa = \/%cos(t -

in the same equation window as the IVP, selecting a custom 2D plot, and
plotting botha andx vs.t.]
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Repeat Problem 1 for the functiong(t) and \/%sin(t —Z). To graph a
good approximation ofy(t), solve the system equivalent of Bessel's equation
of order zero (from Problem 1) with initial data = 0.89357, x(tg) = 0,

X (tp) = 0.87942 As in Problem 1, we have to avoid the singularity@t 0,
especially here becaudg(0) = —oco. The given initial data are taken from
published values of Bessel functions and their derivatives.
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Exploration 11.3. Aging Spring Models

1. Checkoutthe Library file “Modeling an Aging Spring” in the “Physical Mod-
els” folder (see Figure 11.4). The ODE in the file models the motion of a
vertically suspended damped and aging spring that is subject to gravity. Carry
out the suggested explorations.

2. Show that

X(t) = ,/%sin(? In(t + 1)) — At 1cos<§3 In(t+ 1))

is an analytic solution of the initial value problem
Xt
t+1)2

Explain why this IVP provides another model for the motion of an aging
spring that is sliding back and forth (without damping) on a support table.

X'(t) + 0, x(0)=-1, X0 =0
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3. Graph the solutiorx(t) from Problem 2 over the interval 8 x < 10 and
compare the graph to the one obtained in Module 11 using ODE Architect.
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Exploration 11.4. The Incredible Lengthening Pendulum

Suppose that we have an undamped pendulum whose length L = a+ bt in-
creases linearly over time. Then the ODE that models the motion of this

|:| The ODE for a pendulum is

pendulum of varying length . ,

is derived in Chapter 10. (@a+bte"(t) +2be'(t) + go(t) =0 (13)
where 6 is small enough that siné ~ 6, the mass of the pendulum bob is 1,
and the value of the acceleration due to gravity is g = 32!

1. With a= b =1 and initial condition®(0) = 1 and¢’(0) = 0, use ODE Ar-
chitect to solve ODE (13) numerically. What happen8 ast — +oo?

2. Under the same conditions, what happens to the oscillation time of the pen-
dulum ast - +o00? (The oscillation time is the time between successive
maxima off(t).)

1See the article “Poe’s Pendulum” by Borrelli, Coleman, and Hobsdvidthematics Magazine
Vol. 58 (1985) No. 2, pp. 78-83. See also “Child on a Swing” in Module 10.
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Show that the change of variables
s=(2/b)/(a+bt)g, x=0+a+ bt
transforms Bessel's equation of order 1

d’x  dx
Szdsz +sds+(32 1)x=0
into ODE (13) for the lengthening pendulunsyggestionTake a look at the
section “Transforming Bessel's Equation to the Aging Spring Equation” in
this chapter to help you get started. Use the change of variables given above

to express the solution of the IVP in Problem 1 using Bessel functions.]
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