
Id: chapter10.tex,v 1.3 1998-06-07 20:28:36-07 drichard Exp drichard ODE Architect Workbook Page 173 on June 30, 1998 at 3:06

10
C

H
A

P
T

E
R

The Pendulum and Its Friends
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High energy trajectories of a damped pendulum ODE swing over the
top and then settle into decaying oscillations about rest points.

Overview The whole range of fixed-length pendulum models—linear, nonlinear, damped,
and forced—are presented in this chapter, and their behaviors are compared us-
ing insights provided by integrals. After discussing fixed-length pendulum ODEs,
the effects of damping, and separatrices, we turn to a variable-length model. A
child pumping a swing alters the length of its associated pendulum as the swing
moves. We present a nontraditional autonomous model and show that phase-
plane analysis leads to a successful description of the effects of the pumping
action. Finally, the problem of finding geodesics (the paths of minimum length
between points) on a torus leads to an ODE with a striking resemblance to the
pendulum ODE.

Key words Linear pendulum; nonlinear pendulum; damping; energy; pumping (a swing); con-
servation laws; torus; geodesic; limit cycle; bifurcation

See also Chapter 4 for a spring-mass system which has the same ODE as the linear pendu-
lum; Chapter 11 for a study of damping effects in the Robot and Egg submodule,
and a lengthening pendulum in Exploration 11.4; and Chapter 12 for elaboration
on the forced, damped pendulum resulting in chaos (and control).
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◆ Modeling Pendulum Motion

For a pendulum bob of mass m at the end of a rod of negligible weight and☞ The volumes by Halliday
and Resnick (refs.) are good
general references for physical
models (including the pendulum).

fixed length L at an angle θ to the vertical, Newton’s second law gives

mass · acceleration = sum of forces acting on the bob

The bob moves along an arc of a circle of radius L. The tangential compo-
nent of the bob’s velocity and acceleration at time t are given by Lθ′(t) and
Lθ′′(t), respectively. The tangential component, −mg sin θ, of the gravita-☞ Since the tensile force in

the rod and the radial component
of the gravitational force are
equal and opposite, the radial
acceleration is zero and the
pendulum moves along a circular
arc.

tional force acts to restore the pendulum to its downward equilibrium. The
viscous damping force, −bLθ′, is proportional to the velocity and acts in a di-
rection tangential to the motion, but oppositely directed. Other forces such as
repeated pushes on the bob may also have components F(t) in the tangential
direction

Equating the product of the mass and the tangential acceleration to the
sum of the tangential forces, we obtain the pendulum ODE.

mLθ′′ = −mg sin θ − bLθ′ − F(t) (1)

The equivalent pendulum system is

θ′ = y

y′ = − g
L

sin θ − b
m

y + 1
mL

F(t)
(2)

The angle θ is positive if measured counterclockwise from the downward ver-
tical, and is negative otherwise; θ is measured in radians (1 radian is 360/2π

or about 57◦). We allow θ to increase or decrease without bound because we
want to keep track of the number of times that the pendulum swings over the
pivot, and in which direction. For example, if θ = −5 radians then the pen-
dulum was swung clockwise (the minus sign) once over the top from θ = 0
because the angle −5 is between −π (at the top clockwise from 0) and −3π

(reaching the top a second time going clockwise).
We will work with the undriven pendulum ODE (F = 0) in this chapter.

Since sin θ ≈ θ if |θ| is small, we will on occasion replace sin θ by θ to obtain
a linear ODE. We treat both undamped (b = 0) and damped (b > 0) pendulum
ODEs:

☞ The first two ODEs in this
list have the form of the
mass-spring ODEs of Chapter 4.

θ′′ + g
L

θ = 0 (undamped, linear) (3a)

θ′′ + b
m

θ′ + g
L

θ = 0 (damped, linear) (3b)

θ′′ + g
L

sin θ = 0 (undamped, nonlinear) (3c)

θ′′ + b
m

θ′ + g
L

sin θ = 0 (damped, nonlinear) (3d)

θ′′ + b
m

θ′ + g
L

sin θ = 1
mL

F(t) (damped, nonlinear, forced) (3e)
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Figure 10.1: Solution curves of a damped pendulum system. What is the
meaning of the horizontal solution curves?

Figure 10.1 and the chapter cover figure, respectively, show some solution
curves and trajectories of the damped, nonlinear pendulum ODE, θ ′′ + θ′ +
10 sin θ = 0. Although the two linear ODEs are only good models of actual
pendulum motions when |θ| is small, these ODEs have the advantages that
their solutions have explicit formulas (see Chapter 4). The nonlinear ODEs
model pendulum motions for all values of θ, but there are no explicit solution
formulas.

Now fire up your computer, go to Screen 1.2 of Module 10, and visually
explore the behavior of solution curves and trajectories of linear, nonlinear,
damped, and undamped pendulum ODEs. Pay particular attention to the be-
havior of the animated pendulum at the upper left, and relate its motions to the
trajectories and to the solution curves, and to what you think a real pendulum
would do. Explore all the options in order to understand the differences.

✓ “Check” your understanding by matching solution curves of Figure 10.1
with the corresponding trajectories in the chapter cover figure. Describe the
long-term behavior of the pendulum represented by each curve.

✓ Go to Screen 1.2 of Module 10 and explore what happens to solutions☞ This is also what
Problem 1 of Exploration 10.1 is
about.

of the undamped, linearized ODE, θ′′ + θ = 0, if θ0 is 0 and θ′
0 is large. The

motion of the animated pendulum is crazy, even though it accurately portrays
the behavior of the solutions θ(t) = θ′

0 sin t. Explain what is going on. Is
the linearized ODE a good model here? Repeat with the undamped, nonlinear
ODE, θ′′ + sin θ = 0, and the same initial data as above. Is this a better model?
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There is another way to look at pendulum motion, an approach based
on integrals of motion. This approach goes beyond pendulum motion and
applies to any physical system which can be modeled by a second-order ODE
of a particular type.

◆ Conservative Systems: Integrals of Motion

In this section we will study solutions of the differential equation

☞ V is often called a
potential function.

q′′ = −dV
dq

(4)

for a generic variable q where V(q) is a given function.

Example 1: The undamped, nonlinear pendulum ODE is the special case
where q = θ:

θ′′ = − g
L

sin θ, V(θ) = − g
L

cos θ

Example 2: You will see later in this chapter that geodesics on a surface of
revolution lead to the differential equation

u′′ = M2 f ′

f 3
, V(u) = M2 1

2 f 2

where the generic variable q is u in this case, M is a constant, and f is a
function of u.

ODE (4) is autonomous and equivalent to the system

q′ = y

y′ = −dV
dq

(5)

A solution to system (5) is a pair of functions, q = q(t), y = y(t). One
way to analyze the behavior of these solutions is by a conservation law. A
function K(q, y) that remains constant on each solution [i.e., K(q(t), y(t))
is a constant for all t], but varies from one solution to another, is said to be
a conserved quantity, or an integral of motionand the system is said to be
conservative. For system (5) one conserved quantity is

K(q, y) = 1
2

y2 + V(q) (6)

Here’s how to prove that K(q(t), y(t)) stays constant on a solution—use the
chain rule and system (5) to show that dK/dt is zero:

dK
dt

= y
dy
dt

+ dV
dq

dq
dt

= y

(
−dV

dq

)
+ dV

dq
y = 0

Incidentally, if K is any conserved quantity, so also is αK + β where α and β

are constants and α �= 0.
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Example 3: Here’s an example where we use αK + β, rather than K, as the
integral to show how integrals sometimes correspond to physical quantities.
Look back at the function V(θ) = −(g/L) cosθ for the undamped, nonlinear
pendulum of Example 1. Using formula (6), we see that E(θ, y) is an integral,
where

E(θ, y) = mL2 K(θ, y) + mgL

= mL2

(
1
2

y2 − g
L

cos θ

)
+ mgL

= 1
2

m(Ly)2 + mgL(1 − cos θ)

= kinetic energy + potential energy

This integral is called the total mechanical energyof the pendulum. The con-
stant mgL is inserted so that the potential energy is zero when the pendulum
bob is at its lowest point.

✓ Find the conserved quantity E for the undamped, linear pendulum ODE
θ′′ + θ = 0. Draw level curves E(θ, y) = E0, where y = θ′, in the θy-plane,
and identify the curves (e.g., ellipses, parabolas, hyperbolas).

Drawing the level curves of a conserved quantity K in the qy-plane for
system (5) gives phase plane trajectories of the system and so serves to de-
scribe the motions. This may be much easier than finding solution formulas,

☞ So we can draw
trajectories of system (5) by
drawing level sets of an integral.

but even so, we can take some steps toward obtaining formulas. To see this,
we have from equation (6) that if K has the value K0 on a trjajectory of sys-
tem (5)

1
2

y2 + V(q) = K0, i.e., y = q′ = ±
√

2K0 − 2V(q)

This is a separable first-order differential equation (as discussed in Chapter 2)
that can be solved by separating the variables and integrating:∫

dq√
K0 − V(q)

=
√

2t + C

◆ The Effect of Damping

Mechanical systems are usually damped by friction, and it is important to
understand the effect of friction on the motions. Friction is not well described
by the fundamental laws of physics, and any formula we write for it will
be more or less ad-hoc. The system will now be modeled by a differential
equation of the form

q′′ + f (q, q′) + dV
dq

= 0
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or, rewritten as a system of first-order ODEs,

q′ = y

y′ = − f (q, y)− dV/dq
(7)

where − f (q, y) represents the frictional force; the function f (q, y) always
has the sign of y.

At low velocities, f (q, y) = by is a reasonably good approximation of
the friction due to air, but higher powers of y are necessary at higher veloc-
ities. This latter fact is why reducing the speed limit actually helps reduce
gasoline usage—there is less drag at lower speeds. If friction were only a lin-
ear function of velocity, the effects of a higher speed would be cancelled by
the distance being covered in a shorter time, and the system would expend the
same amount of energy in either case. But if friction depends on the cube of
velocity, for instance, you gain a lot by going more slowly. We will examine
more elaborate friction laws when we study the pumping of a swing, but for
now we will use viscous damping with f = by.

Example 4: Let’s model the motion of a linearized pendulum with and with-
out damping:

θ′ = y

y′ = −10θ − by
(8)

where b = 0 (no damping), or b = 1 (viscous damping). If there is no damp-
ing, then one conserved quantity is

K = 1
2

y2 + 5θ2 (9)

The left graph in Figure 10.2 displays the integral surface defined by for-
mula (9). The surface is a bowl whose cross-sections K = K0 are ellipses.
Projecting the ellipses downward onto the θy-plane gives the trajectories of
system (8) with b = 0.

Once damping is turned on, the integral K in formula (9) no longer is
constant on a trajectory. But the integral concept still gives a good geometric
picture of the behavior of a system under damping, because the value of K
decreases along trajectories. This fact follows from the following computation
(using system (7)):

d
dt

(
y2

2
+ V(q)

)
= y

dy
dt

+ dV
dq

dq
dt

= y

(
− f (q, y)− dV

dq

)
+ dV

dq
y

= −yf (q, y) ≤ 0

where the final inequality follows from the fact that f (q, y) has the sign of y.
In particular, the value of K along a solution of system (8) decreases, and will
either tend to a finite limit, which can only happen if the solution tends to an
equilibrium of the system, or the value of K will tend to −∞. If V is bounded
from below (as happens for all our examples), the latter does not happen.
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Figure 10.2: The left graph shows the integral surface K = y2/2 + 5θ2 for the
undamped, linearized system, θ′ = y, y′ = −10θ, and the projections of the
level curves K = K0. The right graph shows a trajectory of the damped, lin-
earized system, θ′ = y, y′ = −10θ − y, as it cuts across the level curves of K,
with K decreasing as it goes.

Example 5: Let’s turn on viscous damping (take b = 1 in system (8)) and see
what happens. The right side of Figure 10.2 shows a trajectory of the damped,
linear pendulum system as it cuts across the level curves of the integral func-
tion K = y2/2 + 5θ2. K decreases as the trajectory approaches the spiral sink
at θ = 0, y = 0. [The level curves of K are drawn by ODE Architect as
trajectories of the undamped system (8) with b = 0.]

Now let’s turn to the more realistic nonlinear pendulum and see how
damping affects its motions.

Example 6: The nonlinear system is

θ′ = y

y′ = −10 sin θ − by
(10)

where b = 0 corresponds to no damping, and b = 1 gives viscous damping.
In the no-damping case we can take the conserved quantity K to be

K = 1
2

y2 − 10(cosθ − 1) (11)

The left side of Figure 10.3 shows part of the surface defined by equation (11).

Example 7: With damping turned on (set b = 1 in system (10)) a trajectory
with a high initial K-value may “swing over the pivot” several times before
settling into a tightening spiral terminating at a sink, θ = 2nπ, y = 0, for
some value of n. The right side of Figure 10.3 shows one of these trajectories
as it swings over the pivot once, and then heads toward the point, θ = 2π,
y = 0, where K = 0.
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Figure 10.3: The left graph shows the surface K = y2/2 − 10(cos θ − 1) with two
of its bowl-like projections that touch the θy-plane at equilibrium points of
minimal K-value. The nonlinear pendulum system is θ′ = y, y′ = −10 sin θ − by

with b = 0. Turn on damping (b = 1) and watch a trajectory cut across the
level sets K = K0, with ever smaller values of K (right graph).

✓ Would you increase or decrease b to cause the trajectory starting at θ =
−3, y = 12 to approach θ = 0, y = 0? How about θ = 10π, y = 0? What
would you need to do to get the trajectory to approach θ = −2π, y = 0, or is
this even possible?

◆ Separatrices

A trajectory is a separatrixif the long-term behavior of trajectories on one side
is quite different from the behavior on the other side. As we saw in Chapters 6
and 7 each saddle comes equipped with four separatrices: two approach the
saddle with increasing time (the stableseparatrices for that saddle point) and
two approach as time decreases (the unstableseparatrices). These separatrices
are of the utmost importance in understanding how solutions behave in the
long term.

Example 8: The undamped system

θ′ = y

y′ = −10 sin θ
(12)

has equilibrium points at θ = nπ, y = 0. According to the equilibrium cal-
culations in ODE Architect, these points are centers if n is even, and saddles
if n is odd. Each separatrix at a saddle enters (or leaves) the saddle tangent to
an eigenvector of the Jacobian matrix evaluated at the point. ODE Architect
gives us these eigenvectors after it has located the saddle.

Example 9: (Plotting a Separatrix:) To find a point approximately on a saddle
separatrix, just take a point close to a saddle and on an eigenvector. Then solve
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Figure 10.4: Saddle separatrices for
the undamped, nonlinear pendulum
system enclose centers.
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Figure 10.5: Basins of attraction of
spiral sinks are bounded by stable
saddle separatrices.

forward and backward to obtain a reasonable approximation to a separatrix.
For example, at θ = π, y = 0, ODE Architect tells us that (0.3015, 0.9535)

is an eigenvector corresponding to the eigenvalue 3.162, and so the saddle
separatrix is unstable. To graph the corresponding separatrix we choose as the
initial point θ0 = π + 0.003015, y = 0.009535 which is in the direction of
the eigenvector and very close to the saddle point. Figure 10.4 shows several
separatrices of system (12). The squares indicate saddle points, and the plus
signs inside the regions bounded by separatrices indicate centers.

✓ Describe the motions that correspond to trajectories inside the regions
bounded by separatrices. Repeat with the region above the separatrices. Can
a separatrix be both stable and unstable? [Hint: Each separatrix in Figure 10.4
begins and ends at different points.]

Example 10: Add in some viscous damping and the picture completely changes:
Figure 10.5 shows the stable separatrices at the saddle points for the system

θ′ = y

y′ = −10 sin θ − y
(13)

The equilibrium points at θ = 2nπ, y = 0 are no longer centers, but attracting
spiral points (the solid dots). The basin of attractionof each sink (i.e., the
points on the trajectories attracted to the sink) is bounded by the four stable
saddle separatrices.

✓ With a fine-tipped pen, draw the unstableseparatrices at each saddle in
Figure 10.5.

That’s all we have to say about the motions of a constant-length pendulum
for now. More (much more) is discussed in Chapter 12, where we add a
driving term F(t) to the pendulum equations.
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◆ Pumping a Swing

Recall that in an autonomousdifferential equation, the time variable t does
not appear explicitly. The central thing to realize is that the ODE that models
pumping a swing must be autonomous:a child pumping the swing does not
consult a watch when deciding how to lean back or sit up; the movements
depend only on the position of the swing and its velocity. The swinger may
change pumping strategies, deciding to go higher or slow down, but the mod-
eling differential equation for any particular strategy should be autonomous,
depending on various parameters which describe the strategy.

If you observe a child pumping a swing, or do it yourself, you will find☞ If you use a different
pumping strategy, make up a
differential equation of your own!

that one strategy is to lean back on the first half of the forward swing and to
sit up the rest of the time. If you stand on the seat, the strategy is the same:
you crouch during the forward down-swing, and stand up straight the rest of
the time. The work is done when you bring yourself back upright during the
forward up-swing, either by pulling on the ropes (if sitting), or simply by
standing.

The pumping action effectively changes the length of the swing, which
complicates the ODE considerably, for two reasons. Newton’s second law
must be stated differently, as will be shown below, and we must find an ap-
propriate equation to model the changing length.

The question of friction is more subtle. Of course, the air creates a drag,
but that is not the most important component of friction. We believe that
things are quite different for a swing attached to the axle by something flexi-
ble, than if it were attached by rigid rods. Circus acrobats often drive swings
right over the top; they always have rigid swings. We believe that a swing
attached flexibly to the axle cannot be pumped to go over the top. Suppose
the swing were to go beyond the horizontal—then at the end of the forward
motion, the swinger would go into free-fall instead of swinging back; the jolt
(heard as “ka-chunk”) when the rope becomes tight again will drastically slow
down the motion. If you get on a swing, you will find that this effect is felt
before the amplitude of the swing reaches π/2; the ropes become loose near
the top of the forward swing, and you slow down abruptly when they draw
tight again.

We will now turn this description into a differential equation.

◆ Writing the Equations of Motion for Pumping a Swing

Modeling the pendulum with changing length requires a more careful look at
Newton’s second law of motion. The equation F = ma= mq′′ is not correct
when the mass is changing (as when you use a leaky bucket as the bob of a
pendulum), or when the distance variable is changing with respect to position
and velocity (as for the child on the swing). In cases such as this, force is the
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rate of change of the momentum mq′:

Force = (mq′)′ (14)

When the mass and pendulum length are constant, equation (14) indeed re-
duces to the more familiar F = ma.

The analog in rotational mechanics about a pivot, where q = Lθ, is that
the torqueequals the rate of change of angular momentum:

Torque = ( I θ′)′

where I is the moment of inertia (the rotational analog of the mass). If a force
F is applied at a point p, then the torque about the pivot is the vector product
r × F, where r is the position vector from the pivot to p. For the undamped
and nonlinear pendulum, the gravitational torque can be treated as the scalar
−mgLsin θ, and the moment of inertia is I = mL2. Then Newton’s second
law becomes

(mL2θ′)′ = −mgLsin θ (15)

When L and m are constant, equation (15) is precisely the ODE of the un-
damped, nonlinear pendulum. In the case of the child pumping a swing, the
mass m remains constant (and can be divided out of the equation), but L is not
constant, so we must differentiate L2θ′ in (15) using the chain rule to get

2L

(
∂L
∂θ

θ′ + ∂L
∂θ′ θ

′′
)

θ′ + L2θ′′ = −gLsin θ

or, in system form

θ′ = y

y′ = −2y2∂L/∂θ + gsin θ

2y∂L/∂y+ L

(16)

The person pumping the swing is changing L as a function of θ and y.
For the reasons given in Screen 2.3 of Module 10 we will use the following
formula for L:

L = L0 + �L
π2

(π

2
− arctan 10θ

)(π

2
+ arctan 10y

)
(17)

where L0 is the distance from the axle to the center of gravity of the swinger
when upright, and �L is the amount by which leaning back (or crouching)
increases this distance. Note that

1
π

(π

2
− arctan 10θ

)

is a smoothed-out step function: roughly 1 when θ < 0 and 0 when θ > 0.
The jump from one value to the other is fairly rapid because of the factor
10; other values would be appropriate if you were to sit (or stand) up more
or less suddenly. A similar analysis applies to the second arctan factor in
formula (17).
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As for friction with the swing, we will use

f (θ, y) = εy+
(

θ

1.4

)6

y

The first term corresponds to some small viscous air resistance. Admittedly,
the second term is quite ad-hoc, but it serves to describe some sort of in-
surmountable “brick wall,” which somewhat suddenly takes effect when θ >

3/2 ∼ π/2. So it does seem to reflect our qualitative description.
Writing the differential equation as an autonomous system is now routine—

an unpleasant routine since we need to differentiate L, which leads to pretty
horrific formulas. But with this summary, we have tried to make the structure
clear. Now let’s get real and insert friction into modeling system (16):

θ′ = y

y′ = −2y2∂L/∂θ + gsin θ + friction term
2y∂L/∂y+ L

(18)

where L is given by formula (17) and

∂L
∂θ

= −10�L
π
2 + arctan(10y)

π2(1 + 100θ2)

∂L
∂y

= 10�L
π
2 − arctan(10θ)

π2(1 + 100y2)

friction term = εy+
(

θ

1.4

)6

y

(19)

Example 11: Now set g = 32, L0 = 4, �L = 1, and ε = 0 (no viscous
damping), and use ODE Architect to solve system (18). Figure 10.6 shows
that you can pump up a swing from rest at an initial angle of 0.25 radian (about
14◦) within a reasonable time, but not from the tiny angle of 0.01 radian. Do
you see the approach to a stable, periodic, high-amplitude oscillation? This
corresponds to an attracting limit cycle in the θy-plane.

What happens if we put viscous damping back in? See for yourself by
going to Screen 2.5 of Module 10 and clicking on several initial points in the
θy-screen. You should see two limit cycles now:

• a large attracting limit cycle representing an oscillation of amplitude
close to π/2, due to the “brick wall” friction term, and (for ε > 0)

• a small repelling limit cycle near the downward equilibrium, due to fric-
tion and viscous air resistance.

In order to get going, the child must move the swing outside the small
limit cycle, either by cajoling someone into pushing her, or backing up with
her feet on the ground. Once outside the small limit cycle, the pumping will
push the trajectory to the attracting limit cycle, where it will stay until the
child decides to slow down.
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Figure 10.6: Successful pumping (left graph) starts at a moderately high an-
gle (θ = 0.25 radian). If θ0 is small (e.g., θ0 = 0.01 rad), then pumping doesn’t
help much (right graph).

Please note that this structure of the phase plane, with two limit cycles, is
necessary in order to account for the observed behavior: the origin must be a
sink because of air resistance, and you cannot have an attracting limit cycle
surrounding a sink without another limit cycle in between.

✓ Does the system without viscous damping have a small repelling limit
cycle?

◆ Geodesics

Geodesics on a surface are curves that minimize length between sufficiently
close points on the surface; they may, but need not, minimize length between
distant points.

Example 12: Straight lines are geodesics on planes, and they minimize the
distance between arbitrary points. Great circles are geodesics on the unit
sphere, but they only minimize length between pairs of points if you travel
in the right direction. If you travel along the equator your path will be short-
est until you get half-way around the world; but further along, you would have
done better to go the other way.

To look for geodesics, we use the fact that parametrization of a curve γ

by its arc length s results in traversing a curve at constant speed 1, that is,
|dγ/ds| is always 1.

On a surface in three-dimensional space, a geodesic γ is a curve for
which the vector d2γ/ds2 is perpendicular to the surface at the point γ(s).
For now, let’s assume that all curves are parameterized by arc length, so γ ′

means dγ/ds.
If any curve γ (not necessarily a geodesic) on the surface is parametrized

at constant speed, we are guaranteed that γ ′′ is perpendicular to γ ′, but not
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necessarily to the surface. To see this, observe that γ ′ · γ ′ = 1, where γ ′ is
the velocity vector for the curve γ and the “dot” indicates the dot (or scalar
product) of two vectors. Differentiaing the dot product equation we have
γ ′′ · γ ′ + γ ′ · γ ′′ = 0, so γ ′′ is perpendicular to γ ′ (or else is the zero vector).

The statement that γ ′′ is perpendicular to the surfacesays that γ is going
as “straight” as it can in the surface, and that the surface is exerting no force
which would make the curve bend away from its path. Such a curve is a
geodesic. See the book by Do Carmo for a full explanation of why geodesics
defined as above minimize the distance between nearby points.

Example 13: On a sphere, the parallels of latitude yield acceleration vectors
in the plane of the parallel and perpendicular to the parallel (but not in gen-
eral perpendicular to the surface), whereas any great circle yields acceleration
vectors pointing toward the center of the sphere and hence perpendicular to
both the great circle and to the surface. The great circles are geodesics, but
the parallels (except for the equator) are not.

◆ Geodesics on a Surface of Revolution

Suppose that

x = f (u), z= g(u)

is a parametrization by arc length u of a curve in the xz-plane. One conse-
quence of this parametrization is that ( f ′(u))2 + (g′(u))2 = 1. Let’s rotate
the curve by an angle θ around the z-axis, to find the surface parametrized by

P(u, θ) =

 f (u) cosθ

f (u) sin θ

g(u)




Let’s suppose that curves γ on the surface are parametrized by arc length
s and, hence, these curves have

γ(s) =

 f (u(s)) cosθ(s)

f (u(s)) sinθ(s)
g(u(s))




and we need to differentiate this twice to find

γ ′(s) =

 f ′(u(s))u′(s) cosθ(s) − f (u(s)) sinθ(s)θ′(s)

f ′(u(s))u′(s) sin θ(s) + f (u(s)) cosθ(s)θ′(s)
g′(u(s))u′(s)




γ ′′(s) = u′′


 f ′(u) cosθ

f ′(u) sin θ

g′(u)


 + (u′)2


 f ′′(u) cosθ

f ′′(u) sin θ

g′′(u)


 + 2u′θ′


− f ′(u) sin θ

f ′(u) cosθ

0




−(θ′)2


 f (u) cosθ

f (u) sinθ

0


 + θ′′


− f (u) sin θ

f (u) cosθ

0


 (20)
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This array is pretty terrifying, but the two equations

γ ′′ · ∂P
∂u

= 0, and γ ′′ · ∂P
∂θ

= 0 (21)

which express the fact that γ ′′ is perpendicular to the surface, give

u′′ − (θ′)2 f (u) f ′(u) = 0 and 2u′ f (u) f ′(u)θ′ + θ′′( f (u))2 = 0 (22)

That γ ′′ is perpendicular to the surface if formulas (21) hold follows because
the vectors ∂P/∂u and ∂P/∂θ span the tangent plane to the surface at the
point (θ, u). Formulas (22) follow from formulas (21), from the fact that
( f ′(u))2 + (g′(u))2 = 1, and from the formulas

∂P
∂u

=

 f ′(u) cosθ

f ′(u) sin θ

g′(u)


 ,

∂P
∂θ

=

− f (u) sinθ

f (u) cosθ

0




The quantity

M = ( f (u))2θ′ (23)

is conserved along a trajectory of system (22) since

d
ds

[( f (u))2θ′] = ( f (u))2θ′′ + 2u′θ′ f ′ f = 0

The integral M behaves like angular momentum(see Exploration 5 for
the central force context that first gave rise to this notion).

Substituting θ′ = M/( f (u))2 into the first ODE of equation(22) gives

u′′ − M2 f ′(u)

( f (u))3
= 0 (24)

Using equations (23) and (24), we obtain a system of ODEs for the geodesics
on a surface of revolution:

θ′ = M
( f (u))2

u′ = w

w′ = M2 f ′(u)

( f (u))3

(25)

We recognize that ODE (24) is of the form of ODE (4), so

u′′ = − d
du

M2

( f (u))2

and we can analyze this ODE by the phase plane and conservation methods
used earlier. Let us now specialize to the torus.
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◆ Geodesics on a Torus

Rotate a circle of radius r about a line lying in the plane of the circle to obtain
a torus. If R is the distance from the line to the center of the circle, then in the
above equations we can set

x = f (u) = R+ r cos u

z= g(u) = r sin u

If we set r = 1, then we have ( f ′)2 + (g′)2 = 1 as required in the derivation
of the geodesic ODEs. The system of geodesic ODEs (25) becomes

θ′ = M
(M + cos u)2

u′ = w

w′ = − M2 sin u
(R+ cos u)3

(26)

where M is a constant. The variable u measures the angle up from the outer
equator of the torus, and θ measures the angle around the outer equator from
some fixed point. Figure 10.7 shows seventeen geodesics through the point
θ0 = 0, u0 = 0 with w0 sweeping from −8 to 8. In Figure 10.7 and subsequent
figures we take R= 3 and M = 16. Figure 10.8 shows the geodesic curves in
the θu-plane (left graph) and in the uu′-plane (right). Note the four outlying
geodesics that coil around the torus, repeatedly cutting both the outer [u =
2nπ] and the inner [u = (2n+ 1)π] equators and periodically going through
the hole of the donut. Twelve geodesics oscillate about the geodesic along the
outer equator.

x

y

z

Figure 10.7: Seventeen geodesics through a point on the outer equator.
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Figure 10.8: The seventeen geodesics of Figure 10.7 drawn in the θu-plane
(left) and in the uu′-plane (right).

Figure 10.9 shows the outer and inner equatorial geodesics (the horizontal
lines) in the θu-plane, as well as three curving geodesics starting at θ0 = 0,
u0 = 0. One oscillates about the outer equator six times in one revolution
(i.e., as θ increases from 0 to 2π). The other two start with values of y0

that take them up over the torus and near the inner equator. One of these
geodesics turns back and slowly oscillates about the outer equator. The other
starts with a slightly larger value of y0, cuts across the inner equator, and
slowly coils around the torus. This suggests that the inner equator (u = π)
is a separatrixgeodesic, dividing the geodesics into those that oscillate about
the outer equator from those that coil around the torus. This separatrix is

☞ Try this and see how hard
it is to stay on the inner equator.

u=-pi

u=0

u=pi

u=2pi

u=3pi

 

0 3.142 6.284

theta

-5

-2.5

0

2.5

5

7.5

10

u

Figure 10.9: Equatorial geodesics (lines), a geodesic that rapidly oscillates
around the outer equator, another that oscillates slowly around the outer
equator, and a third that slowly coils around the torus.
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Figure 10.10: The graphs of the toroidal geodesics in the uu′-plane (left) look
like the trajectories of an undamped, nonlinear pendulum (right).

unstable in the sense that if you start a geodesic near the inner equator (say at
θ0 = 3.14, y0 = 0) and solve the system (26), then the geodesic moves away
from the separatrix.

Why do we call this geodesic model a “friend of the pendulum”? Take a
look at the u′ and w′ ODEs in system (26). Note that if we delete the term
“cos u” from the denominator of the w′ equation, then we obtain the system

u′ = w

w′ = − M2

R3 sin u
(27)

which is precisely the system for an undamped, nonlinear pendulum with
g/L = M2/R3. This fact suggests that geodesics of (26) plotted in the uu′-
plane will look like trajectories of the pendulum system (27). Figure 10.10
compares the two sets of trajectories and shows how much alike they are. This
illustrates a general principle (which, like most principles, has its exceptions):
If two systems of ODEs resemble one another, so will their trajectories.

References Arnold, V.I., Ordinary Differential Equations(1973: M.I.T.)
Note: Arnold’s book is the classical text. Much of the considerable liter-
ature on modeling swings has been influenced by his description, which
uses a nonautonomous length function, L(t), instead of L(θ, θ′). In Sec-
tions 27.1 and 27.6, Arnold shows that if the child makes pumping mo-
tions at the right frequency at the bottom position of the swing, the mo-
tion eventually destabilizes, and the swing will start swinging without any
push. This is correct (we have seen it done, though it requires pumping
at an uncomfortably high frequency), but appears to us to be completely
unrelated to how swings are actually pumped. Since the usual swing-
pumping is done without reference to a clock, a proper model must cer-
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Exploration 10.1. Explorations of Basic Pendulum Equation

1. If the nonlinear pendulum ODE (3c) is approximated by the linear ODE (3a),
how closely do the trajectories and the component curves of the two ODEs
match up? Screen 1.2 in Module 10 will be a big help here.

2. What would motions of the system, x′ = y, y′ = −V(x), look like under
different potential functions, such as V(x) = x4 − x2? What happens if a
viscous damping term −y is added to the second ODE of the system? Use
graphical images like those in Figures 10.2 and 10.3 to guide your analysis.
Use ODE Architect to draw trajectories in the xy-plane for both the undamped
and damped case. Identify the equilibrium points in each case as saddles,
centers, sinks, or sources. Plot the stable and the unstable saddle separatrices
(if there are any) and identify the basin of attraction of each sink. [Suggestion:
Use the Equilibrium feature of ODE Architect to locate the equilibrium points,
calculate Jacobian matrices, find eigenvalues and eigenvectors, and so help to
determine the nature of those points.]
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3. Find all solutions of the undamped and linearized pendulum ODE,

θ′′ + (g/L)θ = 0

Show that all solutions are periodic of period 2π
√

L/g. Are all solutions of
the corresponding nonlinear pendulum ODE, θ′′ + (g/L) sin θ = 0, periodic?
If the latter ODE has periodic solutions, compare the periods with those of
solutions of the linearized ODE that have the same initial conditions.

4. Use the sweep and the animate features of ODE Architect to make “movies”
of the solution curves and the trajectories of the nonlinear pendulum ODE,
θ′′ + bθ + sin θ = 0, where θ0 = 0, θ′

0 = 10, and b is a nonnegative parameter.
Interpret what you see in terms of the motions of a pendulum. In this regard,
you may want to use the model-based pendulum animation feature of ODE
Architect.
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Exploration 10.2. Physical Variations for Child on a Swing

1. Module 10 and the text of this chapter describe a swing-pumping strategy
where the swinger changes position only on the first half of the forward swing
(i.e., where θ is negative but θ′ is positive). Is this the strategy you would use
to pump a swing? Try pumping a swing and then describe in words your most
successful strategy.
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2. Rebuild the model for the length function L(θ, θ′) of the “swing pendulum”
to model your own pumping scenario. [Suggestion:Change the arguments
of the arctan function used in Module 10 and the text of this chapter.] Use
the ODE Architect to solve your set of ODEs. From plots of tθ-curves and
of θθ′-trajectories, what do you conclude about the success of your modeling
and your pumping strategy?
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Exploration 10.3. Bifurcations

In these problems you will study the bifurcations in the swing-pumping model
of Module 10 and this chapter as the viscous damping constant ε or the in-
cremental pendulum length �L is changed.

1. There is a Hopf bifurcation for the small-amplitude repelling limit cycle at
ε = 0. for the swing-pumping system (18) and (19) Plot lots of trajectories
near the origin θ = 0, y = 0 for values of ε above and below ε = 0 and
describe what you see. What does the ODE Architect equilibrium feature tell
you about the nature of the equilibrium point at the origin if ε < 0? If ε = 0?
If ε > 0?
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2. Now sweep �L through a series of values and watch what happens to the
large-amplitude attracting limit cycle. At a certain value of �L you will see
a sudden change (called a homoclinic, saddle-connection bifurcation). What
is this value of �L? Plot lots of trajectories for various values of �L and
describe what you see.
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Exploration 10.4. Geodesics on a Torus

The basic initial value problem for a geodesic starting on the outer equator
of a torus is

θ′ = M
(M + cos u)2

u′′ = − M2 sin u
(R+ cos u)3

u(0) = 0, u′(0) = α, θ(0) = 0

(28)

where M is a constant.

1. Make up your own “pretty pictures” of geodesic sprays on the surface of the
torus by varying u′(0). Explain what each geodesic is doing on the torus. If
two geodesics through u0 = 0, θ0 = 0 intersect at another point, which pro-
vides the shortest path between two points? Is every “meridian”, θ = const.,
a geodesic? Is every “parallel”, u = const., a geodesic?
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2. Repeat Problem 1 at other initial points on the torus, including a point on the
inner equator.

3. Explore different values for R (between 2 and 5) for the torus—what does it
mean for the solutions of the ODEs for the geodesics? To what extent does
the ugly denominator in the ODEs mess up the similarity to the nonlinear
pendulum equation?

Answer by discussing effects on θu-phase portraits.
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Exploration 10.5. The Central Force and Kepler’s Laws

An object at position r(t) (relative to a fixed coordinate frame) is moving
under a central force if the force points toward or away from the origin, with
a magnitude which depends only on the distance r from the origin. This is
modeled by the differential equation r′′ = f (r ) r, where we will take r(t) to be
a vector moving in a fixed plane.

Example 14: (Newton’s law of gravitation) This, as applied to a planet and
the sun, is perhaps the most famous differential equation of all of science.
Newton’s law describes the position of the planet by the differential equation

r′′ = − AG
r3

r,

where r is the vector from the center of gravity of the two bodies (located, for
all practical purposes, at the sun) to the planet, G is the universal gravitational
constant, and A = M3/(m+ M)2, where m is the mass of the planet (so for all
practical purposes, A is the mass of the sun).

1. Newton’s law of gravitation is often called the “inverse square law,” not the
“inverse cube law.” Explain.

2. The way to analyze a central force problem is to write it in polar coordinates,

☞ Another way to write the

vector r is r = î cos θ + ĵ sin θ,
where î and ĵ are unit vectors
along the positive x- and y-axes,
respectively.

where

r = r[cos θ, sin θ]

r′ = r ′[cos θ, sin θ] + rθ′[− sin θ, cos θ]

r′′ = (r ′′ − r (θ′)2)[cos θ, sin θ] + (2r ′θ′ + rθ′′)[− sin θ, cos θ]

Show that the central force equation r′′ = f (r )r yields

2r ′θ′ + rθ′′ = 0 (29)

and

r ′′ − r (θ′)2 = r f (r ) (30)



Id: chapter10.tex,v 1.3 1998-06-07 20:28:36-07 drichard Exp drichard ODE Architect Workbook Page 202 on June 30, 1998 at 3:06

202 Exploration 10.5

3. Show that the quantity M = r2θ′ is constant as a function of time during a
motion in a central force system, using equation (29).

The quantity M (now called the angular momentum of the motion) was
singled out centuries ago as a quantity of interest precisely because of the
derivation above. You should see that the constancy of M is equivalent to
Kepler’s second law: the vector r sweeps out equal areas in equal times.

4. Substitute θ′ = M/r2 into equation (30) and show that, for each value of the
particular central force f (r ) and each angular momentum M, the resulting
differential equation is of the expected form.

5. Specialize to Newton’s inverse square law with k = AG and show that the
resulting system becomes

r ′′ = − k
r2

+ M2

r3

or the system

r ′ = y

y′ = − k
r2

+ M2

r3

Make a drawing of the phase plane for this system, and analyze this drawing
using the conserved quantity K, where

K(r, y) = y2

2
+ k

r
− M2

2r2

K is evidently defined only for r > 0, and K has a unique minimum, so the
level curves of K are simple closed curves for K << 0, corresponding to the
elliptic orbits of Kepler’s first law, an unbounded level curve when K = 0
corresponding to a parabolic orbit, and other unbounded curves for K > 0
which correspond to hyperbolic orbits. (For discussion of these three cases
and their relation to conic sections, see Hubbard and West, Part II, Section 6.7
pp. 43–47.)
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