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Pacific sardine population and harvest.

Overview In the two decades from 1932 to 1951, the Pacific sardine fishery completely
collapsed. In this chapter you will learn to use the ODE Architect to construct
a mathematical model which describes this event rather well. This will have two
purposes: it will familiarize you with the menus and features of the ODE Architect,
and it will acquaint you with the principles of mathematical modeling.

First we’ll construct a model for the Pacific sardine population during the
years 1930–1950 as if it were unharvested. Then we will focus on the harvesting
that actually took place and see how it contributed greatly to the destruction of
the sardine population.

Key words Modeling; Pacific sardine; population model; initial conditions; exponential growth;
carrying capacity; logistic equation; harvesting

See also Chapter 9 for more on population models.
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2 Chapter 1

◆ Building a Model of the Pacific Sardine Population

Step 1: State the problem and its context
The Pacific sardine (Sardinops sagax caerulea) has historically experienced☞ In this chapter we will

build a model for the sardine
fishery in California and also
introduce features of the ODE
Architect Tool for solving
differential equations. Consult
theUser’s Guidefor a full
description of all features of the
tool.

long-range cycles of abundance and depletion off the West Coast of Califor-
nia. It was during one of the abundant periods, 1920 through 1951, that a huge
sardine fishing and canning industry developed. The total catch for the Cal-
ifornia coastline reached a peak of 726,124 tons during the 1936–37 season
(June through the following May). The Pacific sardine population then began
a serious decline during the 1940s until, as one estimate has it, by 1959 the
sardine biomass was 5% (0.2 million tons) of the 1934 level (4 million tons).
(Thebiomassis the amount of a particular organism in its habitat.) There is
general agreement that heavy harvesting played a role in the decimation of the
Pacific sardine during that period. The fishing industry had a serious decline
after the 1950–51 season: increasing numbers of fishermen went bankrupt or
moved to other fisheries. Undoubtedly the canneries were also affected.

After 50 years of fishing for the Pacific sardine, a moratorium was im-
posed by the California legislature in 1967. The Pacific sardine seems to be
making a comeback as of the mid-1980s, though the numbers are not yet near
the abundant levels of the 1930s.

Here are the goals of your model:

1. Determine the extent to which the precipitous decline of the Pacific sar-☞ Problem statement.

dine population was due to over-harvesting from 1941 to 1951.

2. Ascertain an optimal harvest rate that would stabilize and sustain the
sardine population during that time period.

Step 2: Identify and assign variables
Assigning the variables in a mathematical model is a a skill that requires some
practice. Doing some background reading and studying the context of the
problem and the problem statement helps to clarify which are the most impor-
tant features of the system you wish to model.

It turns out that there tend to be long-range cycles of Pacific sardine abun-
dance and scarcity. These cycles are not yet completely understood, but it is
certain that factors such as ocean temperature, nutrient upwelling from deep
waters, currents that aid fish migration, predator populations of larger fish and
sea lions, and, of course, fishing, play a vital role in the cycles. In this model
we will focus on a period when the harvesting of the sardine was very heavy.
Due to the large magnitude of the harvesting, its effect is dominant for the pe-
riod of time we will model, 1941–1951, so we will neglect the other factors.
That the other factors still operate on the population is evidenced by the dif-
ficulty in getting the model to match the data perfectly. Nevertheless, you’ll
see how modeling, while not always explaining every aspect, provides insight
into the dynamics of an otherwise very complex biological relationship.
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Building a Model of the Pacific Sardine Population 3

Given the information we have at this point we need the following vari-
ables and parameters in our model:

1. Sardine biomass (in units of million tons)☞ Sardine biomass is a state
variable, the other quantities are
parameters. 2. Growth rate for the Pacific sardine (in units of million tons/year)

3. Maximum biomass, orcarrying capacity(in units of million tons)

4. Sardine harvesting (in units of million tons/year)

Note that we opted to define sardine biomass in million tons, rather than num-
bers of fish, to be consistent with the data and estimates used.

It’s good practice to introduce as few parameters as necessary into a
model at first. Additional parameters can be added if they are needed to im-
prove the accuracy of the model. The model may be refined until the desired
level of accuracy is achieved.

With the variables and parameters identified, the next step is to construct
an equation for the rate of change of the state variable in terms of the state
variable itself, the model’s parameters, and possibly also time. This equation
is known as a differential equation (abbreviated ODE). When an ODE is en-
tered into ODE Architect along with an initial value of the state variable, the
Architect Tool displays a graphical representation of the solution.

Figure 1.1 represents the estimated Pacific sardine biomass and harvest☞ Graphical representation
of the problem. during the period 1941–1951. Note again the use of sardine biomass in million

tons, rather than numbers of fish.
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Figure 1.1: Sardine biomass and harvest.

Our first task is to use ODE Architect to build a mathematical model
to simulate the growth and decline of the Pacific sardine biomass without
harvesting. Then we can explore the impact of harvesting on that biomass.
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4 Chapter 1

Place the ODE Architect CD-ROM in your computer and start the ODE☞ Click on the spinning orb
to go directly to the Architect
Tool.

Architect Tool. Four quadrants will be displayed on the screen (see Fig-
ure 1.2). The upper left quadrant is the equation quadrant; it should be empty
now. The two right-hand quadrants should be empty. These are plot quad-
rants that will display 2- or 3-dimensional plots when you solve differential
equations. The lower left quadrant currently shows the initial conditions (IC )
display. Notice that it is selectable using the four tabs (IC , Sweep, Solver,
Equilibrium ) on the lower edge of the quadrant. For now leaveIC selected.

Figure 1.2: ODE Architect tool screen

Step 3: State the relationships that govern the variables
We begin by simulating the unchecked growth (no harvesting) of the Pacific
sardine population, which we will designate as the state variablesardine. Ba-
sic biology suggests that it is reasonable to assume that the rate of biomass
growth (i.e., the derivatived(sardine)/dt) at a given timet is proportionalto
the quantity of sardines (the size of the biomass) present at that timet.

Step 4: Translate the laws into equations
Sincesardine′ is a common notation for the derivative (rate of change) of
sardine, we can write

sardine′ = r ∗ sardine

wherer is a proportionality factor that we will refer to as thegrowth rate
factor.
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Building a Model of the Pacific Sardine Population 5

Fishery and biomass data collected over the period 1932–1958 indicate
that the Pacific sardine population has had a volatile history. The Pacific sar-
dine biomass, if not manipulated or constrained, can grow at a rate of between
10% and 40% per year. We will assume a moderate position and set the growth
rate factor atr = 0.20. A modeler often has to make assumptions and guess
parameter values to get a model started; you can refine the assumptions later.

Step 5: Solve the resulting differential equations
Point and click the cursor in the equation quadrant and type in☞ Entering differential

equations.
sardine′ = r ∗ sardine (1)

using an apostrophe for the prime, and an asterisk for multiplication; hitRe-
turn (or Enter) and assign the value 0.20 to the parameterr by typing in

r = 0.20

Now click the cursor on the box markedEnter just below the equation quad-
rant. Notice that this causes scales to appear in the two plot quadrants.

Now go to the lower left quadrant to set the initial conditions. Double☞ Setting initial conditions.

click in the appropriate box to select a variable; then type in the new value.
Set t (time) to start at 1930 and setsardine to be 1 (unit of million tons).
We’ll go back later and put in a more realistic estimate forsardine. In the☞ Setting the time interval.

Integration panel, set the solve time to 20 by inserting the number 20 in the
Interval box. Leave the default value of 100 in the# Pointsbox.

Click theSolve icon and notice that the right arrow is automatically se-
lected. Your screen will look something like this (Figure 1.3):☞ Starting the solution.

Figure 1.3: Exponentially growing sardine population.
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Step 6: Interpret and test the solutions in context
There is now a classical exponential growth curve in the upper right quadrant.☞ Unbounded growth.

This implies that the sardine biomass grows without bound, which can’t be
true as there is not enough room on the planet! The exponential growth must
be limited by factors like available food supplies, disease, predators, and so
on; therefore we have to modify our model to reflect this fact. We learned
earlier that the sardine biomass has been as large as 4 million tons, but we
don’t truly know the maximum sustainable biomass (carrying capacity), so
to start let’s assume a carrying capacity of 6 million tons. We can refine this
guess later if we have trouble fitting the model to actual data. As we said
before, it’s not uncommon to have to make informed guesses for values that
are not known or available. Then the values can perhaps be deduced by “fine
tuning” (refining) the model in subsequent iterations to conform to reality.

Step 7: Refine the model to predict the empirical data
The following differential equation is sometimes used to exhibit maximum☞ Introduce a carrying

capacity. carrying capacity behavior in a population:

sardine′ = r (capacity− sardine)

This equation says that the growth rate at any time is proportional to the “room
to grow” factorcapacity− sardine. Now click the cursor in the equations
region. Using our assumed growth rate constant ofr = 0.20 per year and a
carrying capacity of 6 million tons, we modify the sardine growth to be

sardine′ = r ∗ (6− sardine) (2)

Before entering the new sardine ODE, clear the graphics screens by clicking
on Clear at the lower left and choosingClear All Runs. A “confirmation”
window will pop up; click onYes. Now click in the equation region, make the
corrections to your equation, and then click on the box markedEnter. Click
on theSolveicon and notice in the plot window that the graph of the sardine
biomass climbs and levels out at the assumed carrying capacity of 6 million
tons.

✓ “Check” your understanding by comparing this curve with the earlier
one and notice some significant differences: (1.) The first curve was concave
up; this one is concave down. Why is that significant? (2.) The first curve
grew without bound and had no asymptotes; the second curve has a horizontal
asymptote. Explain why.

Examine the two graphs carefully at early values oft, say the first five
years. Recall that the slope of a line tangent to the solution curve is the growth
rate of the biomass at that time. How do the two curves differ in this regard?
When is the rate of change of the biomass the greatest? Is it realistic for a
biomass to exhibit its greatest rate of increase when the population is small-
est? The answer to these questions is not as simple as you might think. For
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Building a Model of the Pacific Sardine Population 7

many biological populations, rate of change is proportional to the size of the
population. The solution of ODE (1) exhibits this proportionality but it is un-
constrained and so it’s not useful over its whole domain. The solution curve of
ODE (2) doesn’t exhibit the proportional growth property. Which of the two
is most appropriate for the Pacific sardine? We’ll come back to that question
after a little exploration with ODE (2).

Now let’s see if ODE (2) will allow us to exceed the carrying capacity for☞ Exceed carrying capacity.

any length of time. Change the initial biomass to 12 million tons of sardines
in the IC window. Click on theSolve icon. Notice that the vertical scale in
the graph changes to accommodate the revised values and that both the old
(lower) and the new (upper) curves are displayed on the graph. Observe what
happened to the “overstocked” sardine population. How does this compare to
what happened when the initial sardine biomass was 1 million tons? If you
examine the two plots closely, you’ll see that both plots stabilize at a level of
about 6 million tons (see Figure 1.4).

Figure 1.4: Sardine populations approach carrying capacity.

Sometimes it’s advantageous to change the scales of the axes to make☞ To set scaling of axes.

graphs easier to read and interpolate, so we’d like to show you how to reset
the vertical and horizontal scales. (The default setting for scales for ODE
Architect isAuto Scale.) Select the upper right graph by placing the cursor
arrow on the graph and clicking theright-mostmouse button (or click on the
icon at the upper right corner of the graph). You will see various plot window
options presented. SelectScalesfrom the resulting dropdown menu using the
left-mostmouse button. Click onAuto Scaleto toggle it off. (The check in the
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8 Chapter 1

box will disappear.) To change other values, double click in the box to select
the value and just type to make a change. On theX-Scalemenu setMinimum
= 1930;Maximum = 1950;Number of Ticks = 10; andLabel every = 2.
(Adjust the number of ticks by clicking on the down arrow and selecting, or
by double clicking the box and typing in the new value.) Make sureLinear is
selected (notLog). Now select theY-Scalemenu (at the top): click theAuto
Scaleto toggle it off; setMinimum = 0; Maximum = 12;Number of Ticks
= 10; andLabel every= 2, and check that theLinear button is selected. Your
screen should have a window that looks like Figure 1.5:

Figure 1.5: Plot scales window.

Click on OK to cause the graph to be rescaled. (In this particular case, it☞ You must click theOK
button to enter changes. turns out that the scale did not change from the automatically selected value.)

Now click on theClear box in theIntegration panel and chooseClear
All Runs. What has changed? Next click on theSolveicon again. Notice that
you got only the most recent curve (carrying capacity exceeded); you cleared
the previous solution.

We can extend the ease of making comparisons by sweeping through sev-☞ Sweeping a variable.

eral possible initial values forsardineand displaying them all on one graph.
Click on theClear box and chooseClear All Runs. Now notice theSweep
tab beneath theInitial Conditions panel; click onSweep. Click onSinglefor
type of sweep. We will chooseSweep 1to be a sweep (multi-plot) of various
initial values ofsardine. In theSweep 1box, click on the down arrow and
selectsardine. SetStart = 1; Stop = 7; and# Points= 3. Now click on the☞ If the # Points is set ton,

you’ll get n overlayed graphs. Sweepbox next to theSolveicon (not theSweeptab). (Figure 1.6).
Notice that ODE Architect makes several runs. Notice also that the initial

value forsardinelocated in the IC window was ignored and the values we
entered in the sweep conditions were used instead.

To better see these results, let’s rescale the vertical axis (Y-Scale) to Min-
imum = 1 andMaximum = 7. Look back at page 7 if you do not recall how to
do this. Figure 1.7 shows that multiple runs are easily comparable in this for-
mat. Which initial value forsardinecreated the most stable or flattest curve?
Does the population always stabilize around the same biomass?
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Figure 1.6: Setting up the sweep for sardine.

Figure 1.7: Sweeping and solving gives plots with initial sardine tonnages of
1, 4, 7 (in millions).
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Do the resulting curves accurately represent the growth you’d expect over
the whole range of values fort? Growth is usually proportional to population
size when well below the carrying capacity. However, when you look at your
graph notice that for small populations of sardines, the growth rate is rather
steep. As the sardine population approaches the carrying capacity the biomass
should level off, which the preceding curves do reflect.

Now we’ll examine the properties of the model we created in ODE (2).
The growth rate is proportional to(capacity− sardine) and so for small sar-
dine biomass, the biomass grows at a nearly constant rate. Near the carrying
capacity, the factor(capacity−sardine) causes a leveling off (see Figure 1.7):
the factor forces growth to be proportional to the distance from capacity.

◆ The Logistic Equation

Combining the elements of the proportional growth model given by ODE (1)
and the restricted growth model given by ODE (2) leads to what is called
thelogistic equation for growth(or theVerhulst equation, after the nineteenth
century Belgian mathematician and biologist P. F. Verhulst):

sardine′ = r sardine
6− sardine

6
(3)

Notice that for values ofsardinevery near zero, the factorr ∗ sardinedomi-
nates the computation, causing the behavior to approximate exponential growth.
This is because the factor(6− sardine)/6 has a value very near 1. For val-
ues ofsardinenear 6 (the carrying capacity), the factor(6 − sardine)/6 is
near zero, and so growth slows to approach zero. Therefore we can expect
exponential growth for small biomass with growth tapering off as the biomass
approaches carrying capacity. Let’s see if this refinement improves the model.

Click on theIC tab to clear the graph and enter a new equation. After
clicking on theClear box, and choosingClear All Runs, click in the equa-
tions quadrant and modify the growth ODE to read:☞ Changing the equation.

sardine′ = r ∗ sardine∗ (6− sardine)/6 (4)

Don’t forget to click the box labeledEnter. Reset the initial sardine biomass
to 1. Finally, click on theSolveicon. Your screen should look something like
Figure 1.8.

Notice that the graph now displays a mathematical representation more
like what we expect of the sardine biomass over the long term. It is an elon-
gatedS-shaped curve with slow growth for small biomass, maximum growth
near the midrange, and slow growth near the carrying capacity.

Use the sweep feature now to see how the logistic growth curve responds☞ Try various initial values.
As before, use aSinglesweep. for various initial conditions for the variablesardine. Sweep 1sardine; Start

= 1; Stop = 7; # points = 4. Click onSweep. Figure 1.9 shows the four
solution curves.
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Figure 1.8: A logistic growth curve.

Figure 1.9: Four logistic solution curves.
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✓ Does the model respond to your initial conditions in a reasonable man-
ner? Do you think that this is a good population model to use for modeling
the biomass of the Pacific sardine?

Let’s now use the model given in equation (3) to explore the harvesting that
took place in the years 1941–1951.

◆ Introducing Harvesting via Landing Data

In Figure 1.1 you saw a graph of the Pacific sardine harvest and the resulting
biomass decline during the years 1941–51. We have not yet taken into account
this harvest (orlanding) data in our model; so our model does not yet reflect
the collapse of the sardine fishery that occurred. We’ll now incorporate the
landing data into our model in the form of a lookup table.

The tutorial in Module 1 provides you with landing data for the Pacific
sardine over the time period 1941–1951 in the form of a table with 11 rows
and 2 columns (tutorial steps 13 and 14). This data can be entered as alookup
tablenamed HTABLE by following these directions (which also appear in the
tutorial):

• Start by clicking on theEquationsentry on the menu bar and choosing
Lookup Tables to display the lookup table manager window.

• Double click on<Create New Table> to display the new table win-
dow. Enter the name HTABLE, and specify 11 rows and 2 columns in
the appropriate boxes. Then click theOK button. An array of empty
cells will appear with 11 rows and 2 columns.

• Enter the data (provided in the tutorial window) in the array by clicking
on cell [1,1] to start. When all of the data is entered, click theOK
button.

• Close the lookup table manager window.

Now you have a lookup table called HTABLE.
Go to the equation quadrant and, on a new line, add the following☞ Defining the harvest.

harvest= lookupval(HTABLE,1, t,2)

Be sure to click theEnter box. The value returned by lookupval is the data in
column 2 of HTABLE corresponding to thet-value of the data in column 1.
(This value is computed by linear interpolation.)

Let’s now look at this harvest data. Sinceharvestis not an ODE state
variable, the Architect does not automatically generate a plot tab; we will
have to make it by hand. Click on the2D tab at the lower right to select what☞ Using the2D custom tab.

we want to plot on each of the two axes. Place the cursor on the lower right
plot quadrant, and after clicking theright-mostmouse button, selectEdit with
theleft-mostmouse button. Leave theX-Axis variable set tot. For theY-Axis
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click on the down arrow after1. <None> and selectharvest. Now click on
Titles at the top of the edit window and type in theGraph Title box: Harvest.
In the X-axis Title box type: Year; and in theY-axis Title box: Harvest.
See Figure 1.10. ClickOK . Using theright-mostmouse button again on the
lower graph, selectScales. Set theX-Scaleas follows: deselectAuto Scale;
set Minimum = 1940; Maximum = 1955; Number of Ticks = 3; Label
every = 2. Select theY-Scale, deselectAuto Scale, and set:Minimum = 0;
Maximum = 1; Number of Ticks = 5; andLabel every= 1. ClickOK .

Figure 1.10: Plots and Titles panels for 2D tab.

Click on theSolve icon. Notice that a graphical representation of the
Pacific sardine landings appears in the lower graph but the upper graph has
not been affected. That’s because we have not included harvest (landings)
in the sardine model yet. (Note: the two graphs have different vertical axis
scales.)

After clicking onClear and choosingClear All Runs, go to the equation☞ Includingharvestin the
sardine model. quadrant and modify thesardineODE as follows:

sardine′ = r ∗ sardine∗ (6− sardine)/6− harvest (5)

You may have to scroll the equations quadrant (on some computers) in order
to see the whole equation. (You can also move the dividing line between
the right and left quadrants, at the slight expense of the graphing resolution.)
Click the Enter box. Before we run the model, we must change the initial
conditions to reflect the reality of the Pacific sardine population at that time.
In the literature, the most reliable data for the Pacific sardine biomass starts
in 1941. Thus set theIC for t to 1941 and theIC for sardineto 2.71. Reset
Interval to 10. Now click theSolveicon and note the results. For best viewing
of the top right graph window choose theX-Scale; deselectAuto Scale; set
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Figure 1.11: Model sardine biomass (upper), actual sardine biomass (lower).

Minimum = 1940;Maximum = 1955;Number of Ticks = 3; Label every
= 2. Rescale theY-Scaleaxis to:Minimum = 0; Maximum = 3; Number of
Ticks = 3; Label every= 1. See Figure 1.11 for the graphs.

How do these model results compare with the expected behavior at the☞ Fishery collapse.

beginning of the chapter? While the overall behavior is captured in general
terms by the model, it is unusual to have a model match the estimated data
exactly.

✓ What are your thoughts about the model as it relates to historical behav-
ior? Explain any discrepancies.

Step 8: Interpret the implications of the model
It is now clear that while over-exploitation of the sardine landings was not the☞ Analysis.

sole factor, it played a very large role in the collapse of the California fishery
in the early 1950s. Since we now have a functioning model of that ten-year
period in time, you have the amazing power to use your computer to revise
history and attempt to save the fishing industry. What limit on the landings
would have allowed a sizable sardine harvest1 but not a collapse of the fishery?

1Historical note: A limit to the total catch of sardines at between 200,000 and 300,000 tons was
recommended as early as 1929, and repeatedly over the next several years.
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Now it is your turn to examine some options and try some alternate scenarios
in the Explorations that follow.

◆ How to Model in Eight Steps

Modeling a situation mathematically involves many ideas and activities, but
modeling is not always straightforward. There are many times when you may
be puzzled, confused, and frustrated and you must retrace or rethink the steps
involved. We summarize the steps in an order that allows for easy reference,
but keep in mind the need to retreat, reassess, and redefine your thinking.

1. State the problem and its context.

2. Identify and assign variables.

3. State the laws that govern the relationships between the variables.

4. Translate the laws into equations.

5. Solve the resulting equations.

6. Interpret and test the solutions in the context of the natural environment.

7. Refine the model until it predicts the empirical data.

8. Interpret the implications of the model.
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Exploration 1.1. Constant Harvesting of a Biomass

1. No harvesting.
Let’s examine the rate of growth (the derivative) of the sardine biomass using
the logistic model of ODE (3). To do this we’ll look at the values of sardine′

as a function of sardine biomass size. Go to the equations quadrant and type
in the ODE

sardine′ = r ∗ sardine ∗ (6 − sardine)/6

r = 0.20

Click the Enter box.
To create a plot of sardine vs. sardine′, select the 2D tab (if necessary),

place the cursor over the lower right graph, press the right-most mouse button,
and select Edit. For the X-Axis use the down arrow to select sardine. For Y-
Axis 1, select sardine′. Click now on the Titles tab at the top of the edit
window. Type Rate of Growth vs. Biomass as the Graph Title, Sardine as
the X-axis label and Sardine′ as the Y-axis label. Click OK. Place the cursor
over the lower right graph again, press the right-most mouse button and select
Auto Scales: Both (if necessary). Next set the IC for sardine to 1. Click
Clear and select Clear All Runs (if necessary), then click the Solve icon.

The top graph shows (by default) sardine vs. time. Notice in the lower
graph that the sardine growth rate, sardine′, is maximized somewhere near a
midsized sardine population of about 3 million tons. Rescale the Y-axis of the
top graph (if necessary) to Minimum = 0; Maximum = 6; Number of Ticks
= 6. Verify that the sardine biomass grows at the rate of approximately 10%
to 40% per year, depending upon the size of the biomass.
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2. Constant harvesting.
Let’s analyze the effect of constant harvesting on the logistic sardine popula-
tion of Problem 1. Since the sardine biomass was 2.71 million tons in 1941,
reset the sardine IC to 2.71 and keep the sardine vertical scale set on the range
0 to 6 and re-solve to observe the relative stabilization of the population.

Now insert a constant harvesting term in the model by modifying the
ODE in the equation quadrant to read

sardine′ = r ∗ sardine ∗ (6 − sardine)/6 − harvest

Try a harvest value that is slightly less than the biomass growth amount for
2.71 million tons by setting a constant harvest in the equation quadrant. For
example you could try harvest = 0.28 (280,000 tons per year) and solve the
model. (Be sure to click on the Enter box first.)

Now click on the 2D tab in the lower graph quadrant. Clear the graph☞ Clearing a 2D custom
graph. The same procedure clears
a 3D custom graph.

in that quadrant by setting all axes to <None> in the Plots tab of the Edit
box, then going to the Titles tab and deleting all titles. For the upper right
graph you can set up and run a sweep of harvest over the values 0.1 (100,000
tons/year) to 0.7 (700,000 tons/year) using 7 points in the sweep. Describe
the biomass behavior for harvest levels of 0.1; 0.3; 0.5; 0.7. From your explo-
ration, determine what constant harvest amount provides a large harvest yet
does not jeopardize the long-term viability of the Pacific sardine population.
Did the harvest levels suggested by fishery researchers stand up?

3. How does the IC affect the optimum harvest level?
Is the optimum harvest level that you determined in Problem 2 affected by the
initial biomass of the sardine in 1941? Try some different values for the IC
and explain what you learn about the relationship between initial biomass and
the optimum constant harvest amount.
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Exploration 1.2. Constant Effort Harvesting

1. Using a constant effort harvesting function.
Another model for harvesting is to land a certain percentage of the existing
biomass each year. This is called constant effort harvesting. Introduce con-
stant effort harvesting into ODE (5) by setting

harvest = 0.25 ∗ sardine

to harvest 25% of the sardine population each year. Try a run. What happens?
Go back and revise the harvest function to

harvest = k ∗ sardine

and sweep through several values of your choosing for the harvest percentage
k. Summarize your results. What is the optimum harvest percentage?



Id: chapter1.tex,v 1.15 1998-06-30 00:42:13-07 drichard Exp ODE Architect Workbook Page 20 on June 30, 1998 at 3:06

20 Exploration 1.2

2. How does the IC affect the optimum harvest percentage?
Run some experiments to determine if the optimum harvest percentage you
select in Problem 1 is sensitive to the initial biomass of the sardine in 1941.
Explain your results. How do your results compare to the results of Problem 3
in Exploration 1.1?
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Exploration 1.3. Investigating a harvesting function

1. A unifying harvest strategy.
We can combine the strategies used in Explorations 1.1 (Problem 2) and 1.2
(Problem 1) by using a function that approximates each strategy at the ap-
propriate time: proportional harvest for small sardine biomass and constant
harvest for sufficiently large sardine biomass. A function suitable to this pur-
pose is

harvest = α ∗ sardine
β + sardine

Use some algebra to demonstrate that the function does behave as claimed.
Approximately what is the proportion? Approximately what is the constant
harvest level?
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2. Testing the function.
Determine values for α and β suitable for the Pacific sardine based on what
you learned from Explorations 1.1 (Problem 2) and 1.2 (Problem 1). Is the
optimal choice of α and β dependent on the initial biomass of the sardine?
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Exploration 1.4. The Ricker Growth Rate Model

Biologists commonly use the Ricker function to model fish population repro-
duction. The Ricker function is R = αPe(Pr−P)/Pm , where R is the reproduction☞ Compare the Ricker

with the logistic function:
R = r P(1− P/K) for positive
constants r and K.

rate, α is a constant, P is the parental or spawning stock population, Pr is
the stock size at which R = P, and Pm is the stock size that yields maximum
reproduction in the absolute sense. Calibrated for the Pacific sardine during
the time period 1941 through 1951, this function is: R = 0.15Pe(2.4−P)/1.7 .

1. The Ricker population model.
Replace the logistic term in ODE (5) with the Ricker function to obtain

sardine′ = 0.15 ∗ (sardine) ∗ exp((2.4 − sardine)/1.7)

This function exhibits “compensatory behavior” that biologists know many
fish populations exhibit. Plot two sardine populations vs. time on the same
set of axes for comparison: sardine1′ as per the Ricker function above and
sardine2′ as per the logistics growth model used earlier. You have to select
the 2D tab on the graphics window when defining the graph to get both pop-
ulations on the same graph. To compare their respective growth patterns, plot
the two sardine populations from 1920 to 1960 (# Points = 40) with IC set to 1
on both plots and with no harvesting. Based upon this comparison, speculate
what “compensatory” behavior is as envisioned by the biologists and reflected
by the Ricker function.



Id: chapter1.tex,v 1.15 1998-06-30 00:42:13-07 drichard Exp ODE Architect Workbook Page 24 on June 30, 1998 at 3:06

24 Exploration 1.4

2. Repeat the harvest experiments.
Repeat Exploration 1.1, Problem 2, using the Ricker function in the sardine
ODE. What harvest level would provide a stable sustainable Pacific sardine
population? Test whether the optimal harvest rate depends on the popula-
tion IC. Are the results significantly different than when you used the logistic
function?
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