Chapter 6

If needed use the table of standard reduction potential at the end of this homework

- 1- Complete and balance the following redox equations by the ion-electron method:
 - a) $Sn + HNO_3 \rightarrow SnO_2 + NO_2 + H_2O$ (acidic solution)
 - b) $H_2O + MnO_4^{--} + I^- \rightarrow MnO_2 + IO_3^-$ (basic solution)
- 2- Calculate the standrad emf of a cell that uses NO_3^- / NO and Br_2 / Br ⁻ half cell reactions. Write the cell reaction that occuts under standard state conditions?
- 3- Which one of the following reagents is capable of transforming Cu²⁺ to Cu(s) under standard state conditions? I⁻(aq), Ni (s), Al⁺³(aq), F⁻ (aq), Ag (s)
- 4- If the measured voltage of the cell $Zn(s) | Zn^{2+}(aq) || Ag^{+}(aq) | Ag(s)$ is 1.37 V when the concentration of Zn^{2+} ion is 0.010 M, what is the Ag⁺ ion concentration?
- 5- Determine the equilibrium constant for the following reaction at 298 K. $2Fe^{3+}(aq) + H_2O_2(aq) \rightarrow 2H^+(aq) + O_2(g) + 2Fe^{2+}(aq).$
- 6- Calculate the cell emf for the following reaction at 25°C: $2Ag^{+}(0.010 \text{ M}) + H_{2}(1 \text{ atm}) \rightarrow 2Ag(s) + 2H^{+}(pH = 6.0)$
- 7- Calculate ΔG for the cell reaction Mg + Sn²⁺(aq, 0.035M) \rightarrow Mg²⁺(aq, 0.045M) + Sn
- 8- What is the emf of the concentration cell Cu | $Cu^{2+}(0.08 \text{ M}) \parallel Cu^{2+}(1.2 \text{ M}) \mid Cu$?

à

	Half-Reaction	E°(V)	_
•	$F_2(g) + 2e^- \longrightarrow 2F^-(ag)$	+2.87	
	$O_1(g) + 2H^*(aq) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.07	
	$\operatorname{Co}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Co}^{2+}(aq)$	+1.82	
	$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$	+1.77	
	$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	+1.70	
	$Ce^{4+}(aq) + e^- \longrightarrow Ce^{3+}(aq)$	+1.61	
	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O$	+1.51	
	$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	+1.50	
	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.36	
	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O$	+1.33	
	$MnO_2(s) + 4H^+(aq) + 2e^- \longrightarrow Mn^{2+}(aq) + 2H_2O$	+1.23	
	$O_2(g) + 4H^*(aq) + 4e^- \longrightarrow 2H_2O$	+1.23	
	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	+1.07	
oxidizing agent	$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.96	
	$2Hg^{2+}(aq) + 2e^- \longrightarrow Hg_2^{2+}(aq)$	+0.92	
	$Hg_2^{2+}(aq) + 2e^- \longrightarrow 2Hg(l)$	+0.85	
	$Ag^+(aq) + e^- \longrightarrow Ag(s)$	+0.80	
	$\operatorname{Fe}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Fe}^{2+}(aq)$	+0.77	
	$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	+0.68	hereasing strength as reducing agent
	$MnO_4^-(aq) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59	
	$1_2(s) + 2e^- \longrightarrow 21^-(aq)$	+0.53	
	$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.40	
	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0,34	
	$AgCl(s) + e^- \longrightarrow Ag(s) + Cl^-(aq)$	+0.22	
	$SO_4^{2-}(aq) + 4H^*(aq) + 2e^- \longrightarrow SO_2(g) + 2H_2O$	+0.20	
ä	$Cu^{2*}(aq) + e^{-} \longrightarrow Cu^{*}(aq)$	+0.15	
Increasing strength	$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13	
	$2H^+(aq) + 2e^- \longrightarrow H_2(g)$	0.00	
	$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13	
	$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14	
	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	-0.25	
	$\operatorname{Co}^{2^{*}}(aq) + 2e^{-} \longrightarrow \operatorname{Co}(s)$	-0.28	
	$PbSO_4(s) + 2e^- \longrightarrow Pb(s) + SO_4^{-}(aq)$	-0.31	
	$\operatorname{Cd}^{**}(aq) + 2e^{-} \longrightarrow \operatorname{Cd}(s)$	-0.40	
	$\operatorname{Fe}^{*}(aq) + 2e^{-} \longrightarrow \operatorname{Fe}(s)$	-0.44	
	$\operatorname{Cr}^{s+}(aq) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.74	
	$\operatorname{Zn}^{++}(aq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$	-0.76	
	$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	-0.83	
	$Mn^{a+}(aq) + 2e^{-} \longrightarrow Mn(s)$	-1.18	
	$Al^{r+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.66	
	$\operatorname{Be}^{-}(aq) + 2e \longrightarrow \operatorname{Be}(s)$	-1.85	
	$Mg^{-1}(aq) + 2e^{-1} \longrightarrow Mg(s)$	-2,37	
	$Na^{-}(aq) + e^{-} \longrightarrow Na(s)$	-2.71	
	$\operatorname{Ca}^{-}(aq) + 2e^{-} \longrightarrow \operatorname{Ca}(s)$	-2.87	
	$Sr^+(aq) + 2e^- \longrightarrow Sr(s)$	-2.89	
	$\operatorname{Ba}^{*}(aq) + 2e^{-} \longrightarrow \operatorname{Ba}(s)$	-2.90	
	$K^{*}(aq) + e^{-} \longrightarrow K(s)$	-2.93	

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

"For all half-reactions the concentration is 1 M for dissolved species and the pressure is 1 atm for gases. These are the standard-state values.