Chapter Four

1. For the hypothetical reaction $3 \mathrm{~A}+\mathrm{B} \rightarrow 5 \mathrm{C}+2 \mathrm{D}+\mathrm{F}$, write the reaction rate expression in terms of the disappearance of the reactants and the appearance of products?
2. For the following hypothetical reaction, $\Delta \mathrm{P}\left(\mathrm{A}_{5} \mathrm{C}_{12}\right) / \Delta \mathrm{t}$ was found to be $4.1 \times 10^{-2} \mathrm{~atm} / \mathrm{s}$.

$$
\mathrm{A}_{5} \mathrm{C}_{12}(\mathrm{~g}) \rightarrow \mathrm{A}_{5} \mathrm{C}_{6}(\mathrm{~g})+3 \mathrm{C}_{2}(\mathrm{~g})
$$

Determine $\Delta \mathrm{P}\left(\mathrm{C}_{2}\right) / \Delta \mathrm{t}$ for this reaction at the same time.
3. The data below were determined for the reaction

$$
2 \mathrm{NO}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
$$

Exp. \#	$[\mathrm{NO}]$	$\left[\mathrm{H}_{2}\right]$	Initial rate
1	0.084	0.074	$3.52 \mathrm{M} / \mathrm{min}$
2	0.042	0.074	$3.52 \mathrm{M} / \mathrm{min}$
3	0.042	0.23	$14.08 \mathrm{M} / \mathrm{min}$

What is the rate law and rate constant for this reaction?
4. For the chemical reaction $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$, a plot of $\ln [\mathrm{A}]_{t}$ versus time is found to give a straight line with a negative slope. What is the order of reaction with respect to A ?
5. Consider the reaction
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$
The rate of the reaction is $1.6 \times 10^{-4} \mathrm{M} / \mathrm{s}$ when the concentration of A is 0.5 M and the concentration of B is 0.4 M . calculate the rate constant if the reaction is (a) first order in A and first order in B (b) first order in A and zero order in B ?
6. A certain second-order reaction $\mathrm{A} \rightarrow \mathrm{B}$ is 63% complete in 42 min at $25^{\circ} \mathrm{C}$. What is the half-life of the reaction?
7. A certain reaction $\mathrm{A} \rightarrow$ products is zero order in A . If this reaction is 10% complete after 53 s , how long would it take the reaction to be 80% complete?
8. The isomerization of methyl isocyanide, $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$, follows first-order kinetics. The half-lives were found to be 161 min at $199^{\circ} \mathrm{C}$ and 12.5 min at $230^{\circ} \mathrm{C}$. Calculate the activation energy for this reaction.
9. Given that E_{a} for a certain biological reaction is $48 \mathrm{~kJ} / \mathrm{mol}$ and that the rate constant is $2.5 \times 10^{-2} \mathrm{~s}^{-1}$ at $15^{\circ} \mathrm{C}$, what is the rate constant at $37^{\circ} \mathrm{C}$?
10.The activation energy for the reaction $\mathrm{CH}_{3} \mathrm{CO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}$ is 71 $\mathrm{kJ} / \mathrm{mol}$. How many times greater is the rate constant for this reaction at $200^{\circ} \mathrm{C}$ than at $130^{\circ} \mathrm{C}$?
11.The rate law for the reaction $2 \mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$ is rate $=$ $\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right]$. Which one of the following mechanisms is consistent with this rate law? Explain your answer?
a) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ fast
$\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$ slow
b) $\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{5}$ fast
c) $\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{3}+\mathrm{O}_{2}$ slow

NO $\mathrm{NO}_{3}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$ fast
d) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$ slow
$\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$ fast
12. The reaction $2 \mathrm{~A}+3 \mathrm{~B} \rightarrow \mathrm{C}$ is second order with respect to A and zero order with respect to B . When the initial concentration are $[\mathrm{A}]=1.6 \times 10^{-3} \mathrm{M}$ and $[\mathrm{B}]=2.4 \times 10^{-2} \mathrm{M}$, the rate is $4.1 \times 10^{-4} \mathrm{M} / \mathrm{s}$. Calculate the rate constant of the reaction?

