Chapter Four

- 1. For the hypothetical reaction $3A + B \rightarrow 5C + 2D + F$, write the reaction rate expression in terms of the disappearance of the reactants and the appearance of products?
- 2. For the following hypothetical reaction, $\Delta P(A_5C_{12})/\Delta t$ was found to be 4.1×10^{-2} atm/s.

 $A_5C_{12}(g) \rightarrow A_5C_6(g) + 3C_2(g)$

Determine $\Delta P(C_2)/\Delta t$ for this reaction at the same time.

3. The data below were determined for the reaction

 $2NO+H_2 \rightarrow N_2O+H_2O$

Exp. #	[NO]	[H ₂]	Initial rate
1	0.084	0.074	3.52 M/min
2	0.042	0.074	3.52 M/min
3	0.042	0.23	14.08 M/min

What is the rate law and rate constant for this reaction?

- 4. For the chemical reaction $A \rightarrow B + C$, a plot of $\ln[A]_t$ versus time is found to give a straight line with a negative slope. What is the order of reaction with respect to A?
- 5. Consider the reaction

 $A+B\rightarrow C$

The rate of the reaction is 1.6×10^{-4} M/s when the concentration of A is 0.5 M and the concentration of B is 0.4M. calculate the rate constant if the reaction is (a) first order in A and first order in B (b) first order in A and zero order in B?

6. A certain second-order reaction $A \rightarrow B$ is 63% complete in 42 min at 25°C. What is the half-life of the reaction?

- A certain reaction A → *products* is zero order in A. If this reaction is 10% complete after 53 s, how long would it take the reaction to be 80% complete?
- The isomerization of methyl isocyanide, CH₃NC → CH₃CN, follows first-order kinetics. The half-lives were found to be 161 min at 199°C and 12.5 min at 230°C. Calculate the activation energy for this reaction.
- 9. Given that E_a for a certain biological reaction is 48 kJ/mol and that the rate constant is 2.5×10^{-2} s⁻¹ at 15°C, what is the rate constant at 37°C?
- 10. The activation energy for the reaction CH₃CO → CH₃ + CO is 71 kJ/mol. How many times greater is the rate constant for this reaction at 200°C than at 130°C?
- 11. The rate law for the reaction $2NO_2 + O_3 \rightarrow N_2O_5 + O_2$ is rate = $k[NO_2][O_3]$. Which one of the following mechanisms is consistent with this rate law? Explain your answer?

a)	$NO_2 + NO_2 \rightarrow N_2O_4$ $N_2O_4 + O_3 \rightarrow N_2O_5 + O_2$	fast slow
b)	$NO_2 + O_3 \rightarrow NO_5$ $NO_5 + NO_5 \rightarrow N_2O_5 + (5/2)O_2$	fast slow
c)	$NO_2 + O_3 \rightarrow NO_3 + O_2$ $NO_3 + NO_2 \rightarrow N_2O_5$	slow fast
d)	$NO_2 + NO_2 \rightarrow N_2O_2 + O_2$ $N_2O_2 + O_3 \rightarrow N_2O_5$	slow fast

12. The reaction 2A+3B→C is second order with respect to A and zero order with respect to B. When the initial concentration are [A]=1.6x10⁻³M and [B]=2.4x10⁻²M, the rate is 4.1x10⁻⁴M/s. Calculate the rate constant of the reaction?