## Chapter one

1. Consider the following reactions:
(a) $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
(b) $\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g)$
(c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
(d) $\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$

At constant pressure, in which of the reactions is work done by the system on the surrounding? By the surrounding on the system? In which of them no work is done?
2. A gas expands in volume from 2 L to 7 L at constant temperature. Calculate the work done (in joules) if the gas expands (a) against a vacuum, (b) against a constant pressure of 2.4 atm ?
3. Consider the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g}) \quad \Delta \mathrm{H}=-184.6 \mathrm{~kJ} / \mathrm{mol}
$$

If 3 moles of $\mathrm{H}_{2}$ react with 3 moles of $\mathrm{Cl}_{2}$ to form HCl , calculate the work done (in joules) against a pressure of 1 atm at $40^{\circ} \mathrm{C}$. What is $\Delta \mathrm{E}$ for this reaction? Assume the reaction goes to completion.
4. A piece of gold of mass 372 g has a heat capacity of $48.0 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What is the specific heat of gold?
5. Glycine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$, is important for biological energy. The combustion reaction of glycine is given by the equation:
$4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}(\mathrm{~s})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{~N}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{\mathrm{rxn}}=-3857 \mathrm{~kJ}$.
Given that $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8$ $\mathrm{kJ} / \mathrm{mol}$, calculate the enthalpy of formation of glycine.
6. From the following heats of combustion,

$$
\begin{array}{lr}
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{\mathrm{ran}^{\circ}}=-726.4 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{C}(\mathrm{graphite})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{\mathrm{rxn}}=-285.8 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Calculate the enthalpy of formation of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ from its elements:
$\mathrm{C}($ garaphite $)+2 \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
7. Calculate the enthalpy of reaction for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$. $\left[\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right)=52.3 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})\right)=-84.7 \mathrm{~kJ} / \mathrm{mol}\right]$
8. A 6.22 g piece of copper metal is heated from $32.5^{\circ} \mathrm{C}$ to $450^{\circ} \mathrm{C}$. Calculate the heat absorbed (in kJ) by the metal? (specific heat of copper is $0.385 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$ ).
9. Determine the amount of heat (in kJ) given off when 83.65 g of $\mathrm{NO}_{2}$ are produced according to the equation

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \quad \Delta \mathrm{H}=-114.6 \mathrm{~kJ} / \mathrm{mol}
$$

