Chapter 3

VECTORS

Physical Quantities

Vectors Addition

Adding Vectors

 Geometrically- Vector equation
- Commutative Law
- Associative Law
- Vector Subtraction

Adding Vectors by

- Components
- resolving the vector
- writing a vector in magnitude- angle notation

Components

- Unit Vectors
- writing a vector in Unit vector notation

Adding Vectors Geometrically

\cdot Vector equation $\longrightarrow \vec{s}=\vec{a}+\vec{b}$,

- Commutative Law

$$
\vec{a}+\vec{b}=\vec{b}+\vec{a}
$$

- Vector Subtraction

In an orienteering class, you have the goal of moving as far (straight-line distance) from base camp as possible by making three straight-line moves. You may use the following displacements in any order: (a) $\vec{a}, 2.0 \mathrm{~km}$ due east (directly toward the east); (b) $\vec{b}, 2.0 \mathrm{~km} 30^{\circ}$ north of east (at an angle of 30° toward the north from due east); (c) $\vec{c}, 1.0 \mathrm{~km}$ due west. Alternatively, you may substitute either $-\vec{b}$ for \vec{b} or $-\vec{c}$ for \vec{c}. What is the greatest distance you can be from base camp at the end of the third displacement?

North of east = toward the north from due east

West of south= = toward the west from due south

Components of Vectors

- Resolving the vector is the process of finding the components
- Component is the projection of the vector on an axis

$$
a_{x}=a \cos \theta \text { and } a_{y}=a \sin \theta
$$

- Writing a vector in magnitude- angle notation

$\vec{a}: a_{x}$ and a_{y}

Magnitude

$$
a=|a|=\sqrt{a_{x}^{2}+a_{y}^{2}}
$$

Angle (Direction)

$$
\tan \theta=\frac{a_{y}}{a_{x}}=>\theta=\tan ^{-1} \frac{a_{y}}{a_{x}}
$$

How to find the components of a vector in different positions?

When the angle is from the +ve
x-axis

When the angle is from any different axis

To find the components, when the angle is measured from the +ve x-axis use

$$
\begin{aligned}
& a_{x}=a \cos \theta \\
& a_{y}=a \sin \theta
\end{aligned}
$$

Put $\underline{\theta=-v e}$, When the angle is measured clockwise from the +ve x-axis

$$
\begin{aligned}
& a_{x}=a \cos -\theta \\
& a_{y}=a \sin -\theta
\end{aligned}
$$

Put $\underline{\theta=+v e}$, When the angle is measured
Counter-clockwise from the +ve x-axis

$$
\begin{aligned}
& a_{x}=a \cos \theta \\
& a_{y}=a \sin \theta
\end{aligned}
$$

To find the components, when the angle is measured from any axis even the +ve x-axis

1- Take the given angle with the axis
2 - put the signs of the components according to their positions on the axes
3 - put sine or cosine according to the angle position.

Sample Problem |3-2

A small airplane leaves an airport on an overcast day and is later sighted 215 km away, in a direction making an angle of 22° east of due north. How far east and north is the airplane from the airport when sighted?

Unit Vectors

- Unit vector is a vector of magnitude 1 and points in a particular direction

- Writing a vector in Unit vector notation

Scalar components

$$
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}
$$

Adding vectors by Components

$$
\begin{gathered}
\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
\vec{b}=b_{\mathrm{x}} \hat{\imath}+b_{y} \hat{\jmath}+b_{z} \hat{k} \\
\vec{a}=a_{\mathrm{x}} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
\vec{b}=b_{x} \hat{\imath}+b_{y} \hat{\jmath}+b_{z} \hat{k} \\
\vec{a}+\vec{b}=\left(a_{\mathrm{x}}+b_{\mathrm{x}}\right) \hat{\imath}+\left(a_{y}+b_{y}\right) \hat{\jmath}+\left(a_{z}+b_{z}\right) \hat{k} \\
\hline
\end{gathered}
$$

Sample Problem | 3-4

Figure 3-16a shows the following three vectors:

$$
\begin{aligned}
\vec{a} & =(4.2 \mathrm{~m}) \hat{\mathrm{i}}-(1.5 \mathrm{~m}) \hat{\mathrm{j}}, \\
\vec{b} & =(-1.6 \mathrm{~m}) \hat{\mathrm{i}}+(2.9 \mathrm{~m}) \hat{\mathrm{j}} \\
\vec{c} & =(-3.7 \mathrm{~m}) \hat{\mathrm{j}} .
\end{aligned}
$$

and
What is their vector sum \vec{r} which is also shown?

Vectors Multiplication

Scalar (or Dot product)

If the two vectors are given in magnitude
and the angle between them

$$
\vec{a} \cdot \vec{b}=a b \cos \phi
$$

If the two vectors are given in unit vector notation
\downarrow

$$
\begin{aligned}
& \vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
& \vec{b}=b_{x} \hat{\imath}+b_{y} \hat{\jmath}+b_{z} \hat{k}
\end{aligned}
$$

$$
\downarrow
$$

$$
\vec{a} \cdot \vec{b}=a_{\mathrm{x}} b_{\mathrm{x}}+a_{y} b_{\mathrm{y}}+a_{z} b_{\mathrm{z}}
$$

$$
\vec{a} \cdot \vec{b}=a b \cos \phi
$$

1- The scalar product is commutative $\Rightarrow \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
2- If the two vectors are parallel $\Rightarrow \theta=0 \Rightarrow \vec{a} \cdot \vec{b}=a b$
3- If the two vectors are perpendicular $\Rightarrow \theta=90 \Rightarrow \vec{a} \cdot \vec{b}=0 \uparrow$
4- If the two vectors are Antiparallel $\Rightarrow \theta=180 \Rightarrow \vec{a} \cdot \vec{b}=-a b$
5- Multiplying Unit vectors
$\hat{\mathrm{i}} . \hat{\mathrm{i}}=(1)(1) \cos 0=1 \quad \Longrightarrow \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1$
$\hat{\mathrm{i}} . \hat{\mathrm{j}}=(1)(1) \cos 90=0 \Rightarrow \hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0$.

$$
\begin{aligned}
& \text { The scalar product is } \\
& \text { commutative } \\
& \qquad \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \theta=0 \Rightarrow \vec{a} \cdot \vec{b}=a b \quad \overrightarrow{\text { vectors are parallel }} \\
& \theta=180 \Rightarrow \vec{a} \cdot \vec{b}=-a b \Longrightarrow \text { vectors are anti parallel } \\
& \theta=90 \Rightarrow \vec{a} \cdot \vec{b}=0 \Longrightarrow \text { vectors are perpendicular }
\end{aligned}
$$

Sample Problem 3-7

What is the angle ϕ between $\vec{a}=3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}$ and $\vec{b}=-2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{k}}$?

Vector (or Cross product)

$$
|\vec{a} \times \vec{b}|=|c|=a b \sin \phi
$$

1- The vector product is Anti commutative $\quad \Rightarrow \vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
2- If the two vectors are parallel $\Rightarrow \theta=0 \Rightarrow \vec{a} \times \vec{b}=0$
3- If the two vectors are perpendicular $\Rightarrow \theta=90 \Rightarrow|\vec{a} \times \vec{b}|=a b \uparrow$ \square
4- If the two vectors are Anti-parallel $\Rightarrow \theta=180 \Rightarrow \vec{a} \times \vec{b}=0$
5- Multiplying Unit vectors

$$
\begin{aligned}
& |\hat{\mathrm{i}} \times \hat{\mathrm{i}}|=(1)(1) \sin 0=0 \Longrightarrow \hat{\mathrm{i}} \times \hat{\mathrm{i}}=\hat{\mathrm{j}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}} \times \hat{\mathrm{k}}=0 \\
& |\hat{\mathrm{i}} \times \hat{\mathrm{j}}|=(1)(1) \sin 90=1 \Longrightarrow \hat{\mathrm{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}} \\
& \hat{\mathrm{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}}, \quad \hat{\mathrm{j}} \times \hat{\mathrm{k}}=\hat{\mathrm{i}}, \quad \hat{\mathrm{k}} \times \hat{\mathrm{i}}=\hat{\mathrm{j}} \\
& \hat{\mathrm{j}} \times \hat{\mathrm{i}}=\hat{\mathrm{k}} \quad \hat{\mathrm{k}} \times \hat{\mathrm{j}}=-\hat{\mathrm{i}} \quad \hat{\mathrm{i}} \times \hat{\mathrm{k}}=-\hat{\mathrm{j}}
\end{aligned}
$$

any two different
unit vectors
$\hat{\mathrm{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}}, \quad \hat{\mathrm{j}} \times \hat{\mathrm{k}}=\hat{\mathrm{i}}$,
$\hat{\mathrm{k}} \times \hat{\mathrm{i}}=\hat{\mathrm{j}}$

The small angle between the two vectors must be used because the odd property of the sin function
$|\vec{a} \times \vec{b}|=|c|=a b \sin \phi$

> Anti- commutative $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$

> Properties $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0$

$$
\quad \begin{aligned}
& \text { vectors are parallel } \\
& \text { vectors are anti parallel }
\end{aligned}
$$

Sample Problem |3-9

If $\vec{a}=3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}$ and $\vec{b}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{k}}$, what is $\vec{c}=\vec{a} \times \vec{b}$?

The End

