## CH.(9): Center of mass (COM) and Linear Momentum

|                      | Single Particle                 | System of Particles                                                             |
|----------------------|---------------------------------|---------------------------------------------------------------------------------|
| Position(1D)         | x                               | $x_{com} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3 + \dots}$ |
| x-axis               | إحداثيات النقطة على محور x      | Position of centre of mass Where M(total mass)= $m_1+m_2+m_3+$                  |
| y-axis               | y<br>إحداثيات النقطة على محور y | $y_{com} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + \dots}{m_1 + m_2 + m_3 + \dots}$ |
| z-axis               | Z<br>إحداثيات النقطة على محور Z | $z_{com} = \frac{m_1 z_1 + m_2 z_2 + m_3 z_3 + \dots}{m_1 + m_2 + m_3 + \dots}$ |
| Position vector (3D) | r = x i + y j + z k             | $r_{com} = x_{com} i + y_{com} j + z_{com} k$                                   |
|                      |                                 | Position vector of centre of mass                                               |
|                      |                                 | $x_{com}$ is the x-component of the coordinate of the COM                       |
|                      |                                 | $y_{com}$ is the y-component of the coordinate of the COM                       |
|                      |                                 | $z_{com}$ is the z-component of the coordinate of the COM                       |
|                      |                                 | The coordinate of the COM: ( $x_{com}$ , $y_{com}$ , $z_{com}$ )                |

## 2-ch.(7) هناء فرحان

Exp. (1): Three particles of masses  $m_1=1$  kg,  $m_2=2$  kg, and  $m_3=3$  kg are located in xy plane as (3,2), (-1,1), and (3,-2), respectively. Find the coordinate of the center of mass.

The components of the coordinate of the center of mass are  $x_{COM}$  and  $y_{COM}$ 

| Particle | m | x                                                               | Υ                                                                           |
|----------|---|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| 1        | 1 | 3                                                               | 2                                                                           |
| 2        | 2 | -1                                                              | 1                                                                           |
| 3        | 3 | 3                                                               | -2                                                                          |
|          |   | $x_{com} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}$ | $y_{com} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3}$             |
|          |   | $X_{com} = \frac{1*3+2*-1+3*3}{1+2+3} = 1.67$                   | $y_{com} = \frac{1 \times 2 + 2 \times 1 + 3 \times -2}{1 + 2 + 3} = -0.33$ |

The coordinate of the center of mass is(1.67,-0.33)

Exp.(2): Problem (1): (a) The x coordinates of the system's center of mass is

$$x_{com} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3} = \frac{2 * (-1.2) + 4 * 6 + 3 * x_3}{2 + 4 + 3} = -0.5$$

$$\rightarrow x_3 = -1.5 \text{ m}$$

(b) The y coordinates of the system's center of mass is

$$y_{com} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3} = \frac{2 * 5 + 4 * (-0.75) + 3 * y_3}{2 + 4 + 3} = -0.7$$

$$\rightarrow y_3 = -1.43 \text{ m}$$

|                                                                      | Single Particle                                                                                                                       | System of Particles                                                                                                                                                                                        |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Newton's 2 <sup>nd</sup>                                             | $\overrightarrow{F}_{net} = m \ \overrightarrow{a}$                                                                                   | $\overrightarrow{F}_{net} = M \ \overrightarrow{a}_{com}$                                                                                                                                                  |
| (up) + F, +a $-x + F, +a$ $(left) + F, +a$ $-F, -a$ $(down) - F, -a$ | مع مراعاة أن القوة والتسارع كميات متجهه يعوض عنهما بمقدار واتجاه بمقدار $\Rightarrow$ v=0 $\Rightarrow$ a=0 $\Rightarrow$ $F_{net}=0$ | Where $a_{com}$ the acceleration of center of mass مع مراعاة أن القوة والتسارع كميات متجهه يعوض عنهما بمقدار واتجاه واتجاه $\Rightarrow$ $v_{com} = 0$ $\Rightarrow a_{com} = 0$ $\Rightarrow F_{net} = 0$ |

**Exp.(3):** In the figure, what is the magnitude of the force  $F_3$  acting on particle 3 if the center of mass of system is stationary?

Stationary 
$$\rightarrow$$
  $v_{COM} = 0 \rightarrow a_{COM} = 0$   
 $\Sigma F_x = 0$   
 $F_{1x} + F_{2x} + F_{3x} = 0 \rightarrow F_3 = -F_1 - F_2 = -(-5)-(+3)=5-3=2N$ 

|                                                              | Single Particle                                               | System of Particles                                                    |
|--------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|
| Linear<br>Momentum                                           | $\overrightarrow{P} = m \ \overrightarrow{v}$                 | $\overrightarrow{P} = M \overrightarrow{v}_{com}$                      |
|                                                              | مع مراعاة أن السرعة كمية متجهه يعوض عنها بمقدار<br>واتجاه     | مع مراعاة أن السرعة كمية متجهه يعوض عنها بمقدار واتجاه                 |
| *The unit of P is kg m/s *Linear momentum is vector quantity | +v (up)<br>+v (right)<br>-v (left)<br>+v (right)<br>-v (down) | $+v_{COM}$ (up) $+v_{COM}$ (right) $+v_{COM}$ (left) $+v_{COM}$ (down) |
|                                                              | If body is stationary  → v=0 → P=0                            | If body is stationary → v=0 → P=0                                      |



The law of conservation of linear momentum:  $P_{initial} = P_{final}$   $((m_1v_1 + m_2v_2 + m_3v_3 + ...)_i = (m_1v_1 + m_2v_2 + m_3v_3 + ...)_f$ 

### <sub>5-Ch.(7)</sub> هناء فرحان

**Exp.(4):** A 0.4 kg ball is dropped from a window and landed on the street with speed 35 m/s, and then rebound with a speed 25 m/s. What is the magnitude of the change of its momentum?

$$m = 0.4 \text{ kg}$$
  $v_i = -35 \text{ m/s},$   $v_f = +25 \text{ m/s}$ 

$$|\Delta P| = |P_f - P_i| = m |v_f - v_i| = 0.4 |(+25) - (-35)| = 0.4 |25 + 35| = 24 \text{ kg.m/s}$$

**Exp.(5):** A ballot box with mass m=6 kg slides with speed across a frictionless floor in positive direction of an x-axis. The box explodes (انشطر) into two pieces. One piece, with  $m_1$ = 2kg, moves in the positive direction of the x-axis at  $v_1$ =8m/s. The second piece, with  $m_2$ =4kg, rebounds (ارت $v_2$ ) with speed  $v_2$ =2m/s. What is the velocity of the box?

m=6kg v=?? m1=2kg v1=+8m/s(positive x-axis (right)) m2=4kg  $v_2$ = -2m/s (rebounds in negative x-axis-to left)

$$P_{initial} = P_{final}$$

$$((m v)_i = (m_1 v_1 + m_2 v_2)_f$$

$$6 \text{ xv} = 2 \text{ x } 8 + 4 \text{ x } -2 = 16 - 8$$

$$V = 8/6 = +1.33 \text{ m/s}$$

# هناء فرحان

#### **Problems:**

1- The x and y coordinates of the center of mass of the three-particle system shown below are:



- A. 0,0
- B. 1.3 m, 1.7 m
- C. 1.4 m, 1.9 m
- D. 1.9 m, 2.5 m
- E.  $1.4 \,\mathrm{m}, \, 2.5 \,\mathrm{m}$

ans: C

- The center of mass of a system of particles obeys an equation similar to Newton's second law  $\vec{F} = m\vec{a}_{com}$ , where:
  - A.  $\vec{F}$  is the net internal force and m is the total mass of the system
  - B.  $\vec{F}$  is the net internal force and m is the mass acting on the system
  - C.  $\vec{F}$  is the net external force and m is the total mass of the system
  - D.  $\vec{F}$  is the force of gravity and m is the mass of Earth
  - E.  $\vec{F}$  is the force of gravity and m is the total mass of the system

ans: C

- **3-** Momentum may be expressed in:
  - A. kg/m
  - B. gram·s
  - C. N·s
  - D.  $kg/(m \cdot s)$
  - E. N/s

ans: C

- 4- A 1.0-kg ball moving at  $2.0\,\mathrm{m/s}$  perpendicular to a wall rebounds from the wall at  $1.5\,\mathrm{m/s}$ . The change in the momentum of the ball is:
  - A. zero
  - B.  $0.5\,\mathrm{N}\cdot\mathrm{s}$  away from wall
  - C.  $0.5\,\mathrm{N}\cdot\mathrm{s}$  toward wall
  - D.  $3.5\,\mathrm{N}\cdot\mathrm{s}$  away from wall
  - E.  $3.5\,\mathrm{N}\cdot\mathrm{s}$  toward wall

ans: D

# هنساء فرحان

- 5- If the total momentum of a system is changing:
  - A. particles of the system must be exerting forces on each other
  - B. the system must be under the influence of gravity
  - C. the center of mass must have constant velocity
  - D. a net external force must be acting on the system
  - E. none of the above

ans: D

- 6- A 2.5-kg stone is released from rest and falls toward Earth. After 4.0 s, the magnitude of its momentum is:
  - A.  $98 \,\mathrm{kg \cdot m/s}$
  - B.  $78 \,\mathrm{kg \cdot m/s}$
  - C.  $39 \,\mathrm{kg \cdot m/s}$
  - $D. \ 24\,\mathrm{kg\cdot m/s}$
  - E. zero

ans: A