

5.4 Indefinite Integrals and the Net Change Theorem

(page 402, 8th edition)

HOMEWORK 5-17(ODD), 21 - 45(ODD)

students

The Fundamental Theorem of Calculus, FTC 1

If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t)dt \qquad a \le x \le b$$

is continuous on [a, b], and differentiable on (a, b), and g'(x) = f(x).

The Fundamental Theorem of Calculus, FTC 2

If f is continuous on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Where F is any antiderivative of f, that is , a function such that F'=f.

We saw in Section 5.3 that the second part of the Fundamental Theorem of Calculus provides a very powerful method for evaluating the definite integral of a function, assuming that we can find an antiderivative of the function. In this section we introduce a notation for antiderivatives, review the formulas for antiderivatives, and use them to evaluate indefinite integrals.

Indefinite Integrals

Because of the relation between antiderivatives and integrals given by the Fundamental Theorem, the notation $\int f(x)dx$ is traditionally used for an antiderivative of f and is called an **indefinite integral**. Thus

$$\int f(x)dx = F(x) \text{ means } F'(x) = f(x)$$

- A definite integral $\int_a^b f(x) dx$ is a
 - An indefinite integral $\int f(x)dx$ is a

Table of Indefinite Integtrals

$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$$

$$\int cf(x)dx = c \int f(x)dx$$

$$\int kdx =$$

$$\int x^n dx = \boxed{}$$

$$\int e^x dx =$$

$$\int b^x dx = \boxed{}$$

$$\int \frac{1}{x} dx =$$

Table of Indefinite Integtrals -

$$\int \sin x \ dx =$$

$$\int \cos x \, dx =$$

$$\int sec^2x \ dx = \boxed{}$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int \sec x \tan x \ dx =$$

$$\int \csc x \cot x \ dx = - \csc x + C$$

$$\int \frac{1}{x^2 + 1} dx = \boxed{$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}x + C$$

$$\int \sinh x \ dx =$$

$$\int \cosh x \ dx =$$

$$\int \sec^2 kx \, dx = \frac{\tan kx}{kx} + C$$

$$\int \cosh kx \ dx = \frac{\sinh kx}{k} + C$$

Example (I): Evaluate the following

$$\int (10x^4 - 2sec^2x) dx$$

Example (2):

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta$$

Example (3):
$$\int_{0}^{3} (x^3 - 6x) dx$$

Example (4):
$$\int_0^3 \left(2x^3 - 6x + \frac{3}{x^2 + 1}\right) dx$$

Example (5):

$$\int_{1}^{9} \frac{2t^2 + t^2\sqrt{t} - 1}{t^2} dt$$

Exercise (37):

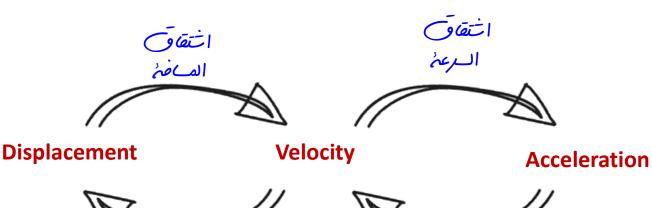
$$\int_0^{\frac{\pi}{4}} \frac{1 + \cos^2 \theta}{\cos^2 \theta} d\theta$$

Recall That:

antiderivative antiderivative

$$a(t) \longrightarrow v(t) \longrightarrow$$

$$\longrightarrow$$
 $s(t)$



$$s(t) = \int v(t)dt$$

antiderivative antiderivative

Integration =
$$\int$$
 Integration = \int

$$v(t) = \int a(t)dt$$

Net Change Theorem

Application of the FTC 2

Recall That: FTC2

If f is continuous on [a,b], then $\int_a^b f(x)dx = F(b) - F(a)$ Where F' = f

So the equation can be rewritten as:
$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$
 is the change in y when x changes from a to b

represents the rate of change of y=f(x) w.r.t. x

Net Change Theorem 🧽 The integral of a rate of change is the net change:

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$
Net change in quantity

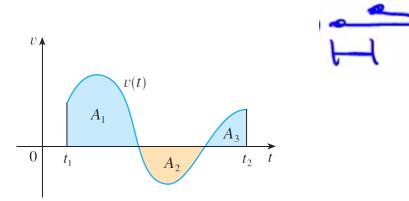
Displacement verses Distance traveled

If an object moves along a straight line with position function s(t), then its velocity is v(t) = s'(t), so

$$\int_{a}^{b} v(t)dt = \int_{a}^{b} s'(t)dt = s(b) - s(a)$$

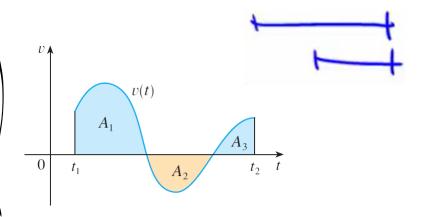
is the net change of position, or displacement, of the particle during the time period from a to b.

الإراحة: أُقصر مافة من نقطة بداية المركة إلى نعايتها



The distance of the object travels during the time interval, we have to consider the intervals when $v(t) \ge 0$ (the particle moves to the right) and intervals when $v(t) \le 0$ (the particle moves to the left). In both cases the distance is computed by integrating |v(t)|,

$$\int_{a}^{b} |v(t)|dt = total \ distance \ traveled$$



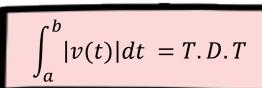
distance =
$$A_1 + A_2 + A_3$$

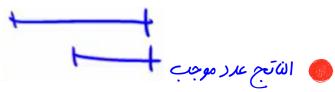
Recall That:

$$v(t) = \int a(t)dt$$

position
$$s(t) = \int v(t)dt$$

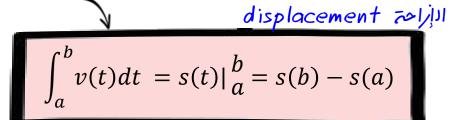
- فى ال بق فعل 4.9 يطلب Velocity function or position function يطلب
- هن مفهومین جریدین. الفرق بینهما وبین البق إنها تفامل محرود ناتجها یطلع عرد





- 🥌 نوجد أصفار 6 بداخل القيمة العطلقة
 - <u>انوجد الفترات الموجبة واللبة</u>
- <u></u>

 نقم التكامل حب الفترات واختلاف اداعرات



- الناتع عدد
- اِذَا كُالَ مُوجِب مِعْنَاهُ الْحَرِكَةِ بِإِنَّهِ الْمِيرِنِ الْمِيرِنِ الْمِيرِنِ
- إذا كان سالب معناها المركة بإتباه الير

The acceleration of the object is a(t) = v'(t), so

$$\int_{a}^{b} a(t)dt = \int_{a}^{b} v'(t)dt = v(b) - v(a)$$

is the change in velocity from time a to time b .

$$v(t) = \int a(t)dt$$

Example (6):

A particle moves along a line so that its velocity at time t is

$$v(t) = t^2 - t - 6$$
 (measured in meters per second).

(a) Find the displacement of the particle during the time period $1 \le t \le 4$.

(b) Find the distance traveled during this time period.

Exercise (61):

The acceleration function (in m/s^2) and the initial velocity are given for a particle moving along a line. Find

- (a) The velocity at time *t.*
- (b) The distance traveled during the given time interval.

$$a(t) = 2t + 4$$
 $v(0) = 5$, $0 \le t \le 10$

Recall That:

$$v(t) = \int a(t)dt$$

$$s(t) = \int v(t)dt$$