5.2 The Definite Integral

October 12, 2014

Definition 1: [Definition of A Definite Integral]

If $f(x)$ is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subinterval with length $\triangle x=\frac{b-a}{n}$. We let $a=x_{0}, x_{2}, \ldots, x_{k-1}, x_{k}, \ldots, x_{n-1}, x_{n}=b$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{k}^{*}, \ldots, x_{n}^{*}$ be any sample points in these subintervals, so $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. Then the definite integral of f from a to b is
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \triangle x$ provided that this limit exists. If it does exist we say that f is integrable on $[a, b]$.

Note 1:

- The symbol \int is called an integral sign. In the notation $\int_{a}^{b} f(x) d x f(x)$ is called integrand and a and b are called limits of integration, lower and upper limits respectively. The $d x$ has no meaning by itself except indicates that the independent variable is x.
- The definite integral $\int_{a}^{b} f(x) d x$ is a number, does not depend on x.

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(y) d y
$$

- The sum $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \triangle x$ is called a Riemann sum.

Theorem1: []
If f is continuous on $[a, b]$ or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$ That is the definite integral $\int_{a}^{b} f(x) d x$ exists.
Theorem2: []
If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \triangle x
$$

where $\triangle x=\frac{b-a}{n}$ and $x_{i}=a+i \triangle x$
Example 1: Express $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}^{3}+x_{i} \sin x_{i}\right) \triangle x$, as an integral on $[0, \pi]$.

Solution:

$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}^{3}+x_{i} \sin x_{i}\right) \triangle x=\int_{0}^{\pi}\left(x^{3}+x \sin x\right) d x$

Example 2: Evaluate the Riemann sum for $f(x)=x^{3}-6 x$ taking the sample point to be the right endpoints and $a=0, b=3$, and $n=6$.

Solution:

With $n=6$, we have $\triangle x=\frac{3-0}{6}=\frac{1}{2}$ and $x_{i}=0+\frac{i}{2}, i=1,2,3,4,5,6 . \quad R_{6}=\sum_{i=1}^{6} f\left(x_{i}\right) \triangle x=$ $[f(0)+f(0.5)+f(1)+f(1.5)+f(2)+f(2.5)+f(3)] \frac{1}{2}=-3.9375$

Example 3: Evaluate $\int_{0}^{3}\left(x^{3}-6 x\right) d x$.

Solution:

We have $\triangle x=\frac{3-0}{n}=\frac{3}{n}$ and $x_{i}=0+i \frac{3}{n}=\frac{3 i}{n}, i=1,2, \ldots, n$. We approximate R_{n}.

$$
\begin{aligned}
\int_{0}^{3}\left(x^{3}-6 x\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \triangle x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(\frac{3 i}{n}\right)^{3}-6\left(\frac{3 i}{n}\right)\right] \frac{3}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\frac{27 i^{3}}{n^{3}}-\frac{18 i}{n}\right] \frac{3}{n} \\
& =\lim _{n \rightarrow \infty}\left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3}-\frac{54}{n^{2}} \sum_{i=1}^{n} i\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{81}{n^{4}}\left(\frac{n(n+1)}{2}\right)^{2}-\frac{54}{n^{2}} \frac{n(n+1)}{2}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{81}{4} \frac{n^{2}(n+1)^{2}}{n^{4}}-\frac{54}{2} \frac{n(n+1)}{n^{2}}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{81}{4}\left(1+\frac{1}{n}\right)^{2}-27\left(1+\frac{1}{n}\right)\right]=\frac{81}{4}-27=\frac{-27}{4}=-6.75
\end{aligned}
$$

Example 4: Evaluate the following integrals by interpreting each in terms of area.

1. $\int_{0}^{1} \sqrt{1-x^{2}} d x$.
2. $\int_{0}^{3}(x-1) d x$.

Solution:

(1) Since $f(x)=\sqrt{1-x^{2}} \geq 0$, then the integral is the area under the curve $y=\sqrt{1-x^{2}}$ for $x=0$ to $x=1$. Now, since $y^{2}=\left(\sqrt{1-x^{2}}\right)^{2}=1-x^{2}$ then $x^{2}+y^{2}=1$ for $0 \leq x \leq 1$, and $y \geq 0$. This is quarter-circle with radius 1 .
Therefore $\int_{0}^{1} \sqrt{1-x^{2}} d x=\frac{1}{4}\left(\pi(1)^{2}\right)=\frac{\pi}{4}$.

(2) The integral represent the net area under the curve $y=x-1$ for $0 \leq x \leq 3$. The area is the deference of the areas of the two triangle.

5.2 Properties of The Integral

1. $\int_{a}^{b} c d x=c(b-a)$
where c is any constant
2. $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
3. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
where c is any constant
4. $\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

5.3 Properties of The Integral

5. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \quad$ where $a \leq c \leq b$
6. If $f(x) \geq 0$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq 0$
7. If $f(x) \geq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
8. If $m \geq f(x) \leq M$ for $a \leq x \leq b$, then $m(b-a) \geq \int_{a}^{b} f(x) d x \leq M(b-a)$

Example 5: Use the properties of integrals to evaluate $\int_{0}^{1}\left(4+3 x^{2}\right) d x$.

Solution:

Note that $\int_{0}^{1} 4 d x=4(1-0)=4$, and $\int_{0}^{1} x^{2} d x=\frac{1}{3}$.
$\int_{0}^{1}\left(4+3 x^{2}\right) d x=\int_{0}^{1} 4 d x+3 \int_{0}^{1} x^{2} d x=4+3 \frac{1}{3}=4+1=5$.

Example 6: If it is known that $\int_{0}^{10} f(x) d x=17$ and $\int_{0}^{8} f(x) d x=12$, find $\int_{8}^{10} f(x) d x$. Solution:
Note that $\int_{0}^{8} f(x) d x+\int_{8}^{10} f(x) d x=\int_{0}^{10} f(x) d x$
Hence $\int_{8}^{10} f(x) d x=\int_{0}^{10} f(x) d x-\int_{0}^{8} f(x) d x=17-12=5$..

Example 7: Use the properties of integrals to estimate $\int_{0}^{1} e^{-x^{2}} d x$. Solution:
Since $f(x)=e^{-x^{2}}$ is continuous on $[0,1]$ and differentiable on $(0,1)$, we can find the absolute maximum and absolute minimum. $f^{\prime}(x)=-2 x e^{-x^{2}} \Rightarrow f^{\prime}(x)=0 \Leftrightarrow x=0$. Now, $f(0)=1$, and $f(1)=\frac{1}{e}$, hence $\frac{1}{e} \leq e^{-x^{2}} \leq 1$, for $0 \leq x \leq 1$.
Then $\frac{1}{e}(1-0) \leq \int_{0}^{1} e^{-x^{2}} d x \leq 1(1-0)$. Thus $\frac{1}{e} \leq \int_{0}^{1} e^{-x^{2}} d x \leq 1$.

