5.2 The Definite Integral

October 12, 2014

Definition 1: [Definition of A Definite Integral]

If f(x) is a function defined for $a \le x \le b$, we divide the interval [a,b] into n subinterval with length $\triangle x = \frac{b-a}{n}$. We let $a = x_0, x_2, \ldots, x_{k-1}, x_k, \ldots, x_{n-1}, x_n = b$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, x_3^*, \ldots, x_k^*, \ldots, x_n^*$ be any sample points in these subintervals, so $x_i^* \in [x_{i-1}, x_i]$. Then the definite integral of f from a to b is

 $\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \triangle x \text{ provided that this limit exists. If it does exist we say that } f \text{ is integrable on } [a, b].$

Note 1:

- The symbol \int is called an integral sign. In the notation $\int_a^b f(x)dx \ f(x)$ is called integrand and a and b are called limits of integration, lower and upper limits respectively. The dx has no meaning by itself except indicates that the independent variable is x.
- The definite integral $\int_a^b f(x)dx$ is a number, does not depend on x.

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(y)dy.$$

2

• The sum $\sum_{i=1}^{n} f(x_i^*) \triangle x$ is called a Riemann sum.

Theorem1: []

If f is continuous on [a,b] or if f has only a finite number of jump discontinuities, then f is integrable on [a,b] That is the definite integral $\int_{a}^{b} f(x)dx$ exists.

Theorem2: []

If f is continuous on [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \triangle x,$$

where
$$\triangle x = \frac{b-a}{n}$$
 and $x_i = a + i \triangle x$

Example 1: Express $\lim_{n\to\infty}\sum_{i=1}^n(x_i^3+x_i\sin x_i)\triangle x$, as an integral on $[0,\pi]$.

Solution

$$\lim_{n \to \infty} \sum_{i=1}^{n} (x_i^3 + x_i \sin x_i) \triangle x = \int_{0}^{\pi} (x^3 + x \sin x) dx$$

Example 2: Evaluate the Riemann sum for $f(x) = x^3 - 6x$ taking the sample point to be the right endpoints and a = 0, b = 3, and n = 6.

Solution:

With n = 6, we have $\triangle x = \frac{3-0}{6} = \frac{1}{2}$ and $x_i = 0 + \frac{i}{2}$, i = 1, 2, 3, 4, 5, 6. $R_6 = \sum_{i=1}^{6} f(x_i) \triangle x = 0$

 $[f(0) + f(0.5) + f(1) + f(1.5) + f(2) + f(2.5) + f(3)] \frac{1}{2} = -3.9375$

Example 3: Evaluate $\int_{0}^{3} (x^3 - 6x) dx.$

Solution:

We have $\triangle x = \frac{3-0}{n} = \frac{3}{n}$ and $x_i = 0 + i\frac{3}{n} = \frac{3i}{n}$, $i = 1, 2, \dots, n$. We approximate R_n .

$$\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(\frac{3i}{n} \right)^{3} - 6 \left(\frac{3i}{n} \right) \right] \frac{3}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{27i^{3}}{n^{3}} - \frac{18i}{n} \right] \frac{3}{n}$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{n^{4}} \left(\frac{n(n+1)}{2} \right)^{2} - \frac{54}{n^{2}} \frac{n(n+1)}{2} \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{4} \frac{n^{2}(n+1)^{2}}{n^{4}} - \frac{54}{2} \frac{n(n+1)}{n^{2}} \right]$$

$$= \lim_{n \to \infty} \left[\frac{81}{4} \left(1 + \frac{1}{n} \right)^{2} - 27 \left(1 + \frac{1}{n} \right) \right] = \frac{81}{4} - 27 = \frac{-27}{4} = -6.75$$

Example 4: Evaluate the following integrals by interpreting each in terms of area.

1.
$$\int_{0}^{1} \sqrt{1-x^2} \, dx$$
.

2.
$$\int_{0}^{3} (x-1)dx$$
.

Solution:

(1) Since $f(x) = \sqrt{1 - x^2} \ge 0$, then the integral is the area under the curve $y = \sqrt{1 - x^2}$ for x = 0 to x = 1. Now, since $y^2 = (\sqrt{1 - x^2})^2 = 1 - x^2$ then $x^2 + y^2 = 1$ for $0 \le x \le 1$, and $y \ge 0$. This is quarter-circle with radius 1.

Therefore
$$\int_{0}^{1} \sqrt{1-x^2} dx = \frac{1}{4}(\pi(1)^2) = \frac{\pi}{4}$$
.

(2) The integral represent the net area under the curve y = x - 1 for $0 \le x \le 3$. The area is the deference of the areas of the two triangle.

$$\int_{0}^{3} (x-1)dx = A_1 - A_2 = \frac{1}{2}(2.2) - \frac{1}{2}(1.1) = \frac{3}{2}.$$

Properties of The Integral 5.2

$$1. \quad \int\limits_a^b c \, dx = c(b-a)$$

where c is any constant

2.
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

2.
$$\int_{a} [f(x) + g(x)] dx = \int_{a} f(x) dx + \int_{a} g(x) dx$$
3.
$$\int_{a} cf(x) dx = c \int_{a} f(x) dx$$

where
$$c$$
 is any constant

4.
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

5.3 Properties of The Integral

5.
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx \quad \text{where } a \le c \le b$$

6. If
$$f(x) \ge 0$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$

7. If
$$f(x) \ge g(x)$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

8. If
$$m \ge f(x) \le M$$
 for $a \le x \le b$, then $m(b-a) \ge \int_a^b f(x) dx \le M(b-a)$

Example 5: Use the properties of integrals to evaluate $\int_{0}^{1} (4+3x^{2}) dx$.

Solution: Note that $\int_{0}^{1} 4 dx = 4(1-0) = 4$, and $\int_{0}^{1} x^{2} dx = \frac{1}{3}$.

$$\int_{0}^{1} (4+3x^{2}) dx = \int_{0}^{1} 4 dx + 3 \int_{0}^{1} x^{2} dx = 4 + 3 \frac{1}{3} = 4 + 1 = 5.$$

Example 6: If it is known that $\int_{0}^{10} f(x) dx = 17$ and $\int_{0}^{8} f(x) dx = 12$, find $\int_{8}^{10} f(x) dx$. **Solution:**

Note that $\int_{0}^{8} f(x) dx + \int_{8}^{10} f(x) dx = \int_{0}^{10} f(x) dx$

Hence
$$\int_{8}^{10} f(x) dx = \int_{0}^{10} f(x) dx - \int_{0}^{8} f(x) dx = 17 - 12 = 5...$$

Example 7: Use the properties of integrals to estimate $\int_{0}^{1} e^{-x^2} dx$. Solution:

Since $f(x) = e^{-x^2}$ is continuous on [0,1] and differentiable on (0,1), we can find the absolute maximum and absolute minimum. $f'(x) = -2xe^{-x^2} \Rightarrow f'(x) = 0 \Leftrightarrow x = 0$. Now, f(0) = 1, and $f(1) = \frac{1}{e}$, hence $\frac{1}{e} \le e^{-x^2} \le 1$, for $0 \le x \le 1$.

Then
$$\frac{1}{e}(1-0) \le \int_{0}^{1} e^{-x^2} dx \le 1(1-0)$$
. Thus $\frac{1}{e} \le \int_{0}^{1} e^{-x^2} dx \le 1$.

