CALCULUS 110
(2.3) Calculating Limits Using the Limits Laws

Dr. Kola Assad Hijazi

Calculating Limits Using

thetimitslaws

In this section we use the following properties of limits, called the Limit Laws, to calculate limits.

Limit Laws Suppose c is a constant and the limits $\lim _{x \rightarrow a} f(x), \lim _{x \rightarrow a} g(x)$ exist. Then:
(1) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)($
(2) $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
(3) $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$
(4) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, if $\lim _{x \rightarrow a} g(x) \neq 0$
(5) $\lim _{x \rightarrow a}(f(x))^{n}=(\lim f(x))^{n}$
(6) $\lim _{x \rightarrow c} c=c$
(7) $\lim _{x \rightarrow a} x=a$
(8) $\lim _{x \rightarrow a} x^{n}=a^{n} \quad n$ is + ve
(9) $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a} \quad n$ is $+v e$
(10) $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)} n$ is t ve
If n is even, we assume that $\lim _{x \rightarrow n} f(x)>0$
note

Indeterminate forms
\square

Example 2

Evaluate the following limits and justify each step.
(a) $\lim _{x \rightarrow 5}\left(2 x^{2}-3 x+4\right)$
(b) $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$
solution
(b) $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$
solution

If f is a polynomial or a rational function and a is in the domain of f, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Functions with the direct substitution property are called continuous at a

Example 3
Find $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
solution

Example 4 Find $\lim _{x \rightarrow 1} g(x)$ where

$$
g(x)=\left\{\begin{aligned}
x+1, & x \neq 1 \\
\pi, & x=1
\end{aligned}\right.
$$

solution

Example 5
Evaluate $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$ solution

Example 6
Find $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$
solution

Some limits are best calculated by first finding the left - and right - hand limits.

Theorem (1)

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

The limit laws hold for one-sided limits.

Example 7
Show that $\lim _{x \rightarrow 0}|x|=0$.
solution

\qquad
What about $\lim _{x \rightarrow 2}|x| ? ?$

Example 8
$\lim _{x \rightarrow 0} \frac{|x|}{x} \quad$ doesn't exist (T or F.) solution

Example 9

Determine whether the following limit exists
$\lim _{x \rightarrow 4} f(x), \quad f(x)=\left\{\begin{array}{ll}\sqrt{x-4}, \text { if } & x>4 \\ 8-2 x, & \text { if }\end{array} x<4\right.$

solution

$$
\lim _{x \rightarrow 4^{+}} \sqrt{x-4}=0
$$

$\lim _{x \rightarrow 4^{-}} 8-2 x=0$

Thus the limit exists and $\lim _{x \rightarrow 4} f(x)=0$.
remark
when do we have to study limit from the left and from the right?
(1) If the function is a piecewise defined function and the definition changes around the point. like example 9.
(2) a is an end point of an interval of the domain.

Example Find $\lim _{x \rightarrow 0} \sqrt{x}$
solution

In fact, we have 3 cases for $\sqrt{f(x)}$

note Incase of

$$
f(x)= \begin{cases}f_{1}(x), x=a & \text { We don't need to study } \\ f_{2}(x), x \neq a & \text { limit from the right and } \\ \text { from the left. }\end{cases}
$$

Theorem (2)

If $f(x) \leq g(x)$, where x is near to a (except possibly at a) and the limits of f and g both exist as $x \rightarrow a$, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Theorem (3)

(the squeeze theorem)
If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and
$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$. Then $\lim _{x \rightarrow a} g(x)=L$

Example II

Show that $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$

solution

Evaluate the limit, if it exists.
Exercise 15

$$
\lim _{t \rightarrow-3} \frac{t^{2}-9}{2 t^{2}+7 t+3}
$$

solution

Exercise 23
$\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}$
solution

Evaluate the limit, if it exists.
Exercise 24

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}
$$

solution

Exercise $29 \quad \lim _{t \rightarrow 0} \frac{1}{t \sqrt{1+t}}-\frac{1}{t}$ solution

Exercise 59

$$
\text { If } \lim _{x \rightarrow 1} \frac{f(x)-8}{x-1}=10 . \text { Find } \lim _{x \rightarrow 1} f(x)
$$

solution

(3.3) Limits of

Example 5

$$
\lim _{x \rightarrow 0} \frac{\sin 7 x}{4 x}=\frac{7}{4}
$$

Example 6

Calculate $\lim _{x \rightarrow 0} x \cot x$
solution
$\lim _{x \rightarrow 0} x \cot x=0 \cdot \infty$

$$
=\lim _{x \rightarrow 0} \frac{x \cos x}{\sin x}
$$

$$
=\lim _{x \rightarrow 0} \frac{x}{\sin x} \quad \lim _{x \rightarrow 0} \cos x=1 \cdot 1=1
$$

OR
$\lim _{x \rightarrow 0} x \cot x=\lim _{x \rightarrow 0} \frac{x}{\tan x}=1$

Exercise 41

$\lim _{t \rightarrow 0} \frac{\tan 6 t}{\sin 2 t}=\frac{6}{2}=3$

Exercise 42

$\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\sin \theta}=\frac{0}{0}$
solution
$\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\sin \theta}=\lim _{\theta \rightarrow 0} \frac{\frac{\cos \theta-1}{\theta}}{\frac{\sin \theta}{\theta}}=\frac{0}{1}$

Exercise 45
$\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta+\tan \theta}$
solution
\qquad

Exercise 48

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x}
$$

solution

Exercise 45

$$
\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\tan x}{\sin x-\cos x}=\frac{0}{0}
$$

solution

Exercise 48

$$
\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2}=\frac{0}{0}
$$

solution

$12,19,20,22,25,27,31,32,35-37$
Pagel97: 39

