
King Abdulaziz University Faculty of Sciences Physics Department

Second Term 1433-1434 H

Date: 7 /5/ 1434 H

Name: ID No: Section:

CHOOSE THE CORRECT ANSWER

- 1. The displacement of a boy moving with average velocity of 1.2 m/s in 2 minutes is
 - **a)** 200 m **b)** 150 m **c)** 144 m **d)** 100 m
- 2. $10^3 \text{ kg/m}^3 = \dots$
 - **a)** 1 g/cm³ **b)** 10 g/cm³ **c)** 10^2 g/cm³ **d)** 10^3 g/cm³
- 3. If 1 inch = 2.54 cm, the conversion factor to convert 2 inch to cm is
 - **a)** $\frac{1 \ inch}{2.54 \ cm}$ **b)** $\frac{2 \ inch}{2.54 \ cm}$ **c)** $\frac{2.54 \ cm}{1 \ inch}$ **d)** $\frac{2.54 \ cm}{2 \ inch}$
- **4.** 467 micrometer =
 - **a)** $4.67 \times 10^{-5} \text{ m}$ **b)** $4.67 \times 10^{-3} \text{ m}$ **c)** $4.67 \times 10^{-4} \text{ m}$ **d)** $4.67 \times 10^{-2} \text{ m}$
- **5.** The rate of change of position with time is :
 - a) distance b) velocity c) acceleration d) speed
- **6.** \vec{A} and \vec{B} are two vectors as shown in the figure, which of the following is TRUE?

$$\stackrel{\overline{A}}{\longleftrightarrow}$$

a) $\vec{A} \times \vec{B} = 0$ b) $\vec{A} \cdot \vec{B} = 0$ c) $\vec{A} \times \vec{B} = 1$ d) $\vec{A} \cdot \vec{B} = 1$

	\vec{a} in unit vector notation is:		
	a) $0.98\hat{i} + 0.17\hat{j}$		$0.53\hat{i} + 0.42\hat{j}$
	b) $0.29\hat{i} + 20\hat{j}$	d)	$0.23\hat{i} + 14j$
10.	Two vectors of the same magnitude (1 unit) are added; one is directed to the east and one is to the west. The magnitude of the resultant vector is		
	a) 1 b) 2 c) 3 d) 0		
11.	If the vectors $\vec{A} = \hat{i} + \hat{j}$ and $\vec{B} = -\hat{i} + \hat{j}$, then $\vec{A} \times \vec{B}$ is:		
	a) $2 \hat{k}$ b) $-2\hat{i} - 2\hat{k}$ c) $2\hat{i} + 2\hat{k}$ d)	$-\hat{i}$ +	$\hat{j} - \hat{k}$
12.	A car's speed is 30 m/s, after traveling 50 m with constant acceleration it reaches 15 m/s, its acceleration is		
	a) -6.75 m/s^2 b) -11.25 m/s^2 c) 6.75	m/s ²	d) 11.25 m/s ²
13.	. The speedometer عداد السرعة in the car measures :		
	a) velocity b) speed c) acceleration	d)	displacement
Use the following to answer questions 14-15:			
The position of a body moving along the x-axis is given by: $x = 3t - 4t^2 + t^3$			
14.	14. The average velocity for the time interval from $t = 0$ s to $t = 5$ s is:		
	a) $v_{avg.} = 40 \text{ m/s}$ b) $v_{avg.} = 48 \text{ m/s}$ c)	V_{avg} :	= 20 m/s d) $v_{avg} = 8$ m/s

7. Which of the following situations is NOT possible?

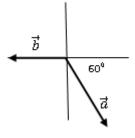
displacement of the boat from its initial position is

a) A body having constant velocity and changing acceleration.
b) A body having changing velocity and constant acceleration.
c) A body having positive velocity and positive acceleration.
d) A body having positive velocity and negative acceleration.

a) 5 km, South **b)** 5 km, North **c)** 10 km, East **d)** 0 km

8. A boat قارب moves (10 km west), then (5 km north), and finally (10 km east). The

9. A vector \vec{a} has a magnitude of 1 unit and in a direction 10° with the positive x-axis,

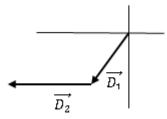

15. The position of the body at t = 4s is:

a) $x = 12 \ m$ **b)** $x = -3 \ m$ **c)** $x = 3 \ m$ **d)** $x = -12 \ m$

16. A particle had a speed of 15 m/s in the positive x direction and 2s later its speed was 33 m/s in the opposite direction. The average acceleration of the particle is:

a) -20 m/s^2 **b)** -24 m/s^2 **c)** 20 m/s^2 **d)** 24 m/s^2

17. As shown in the figure, if the magnitudes of \vec{a} and \vec{b} are 10 units and 25 units, respectively على التوالي , the x-component of the resultant of \vec{a} and \vec{b} is:

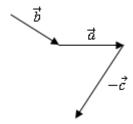


a) -20 units **b)** -30 units **c)** -2.5 units **d)** -22.5 units

18. Raindrops قطرات المطر fall 1700 m from a cloud to the ground, the drops's velocity as they reached the ground is:

a) 0 **b)** -183 m/s **c)** 58 m/s **d)** -129 m/s

19. In the figure, the signs of the x and y components of the vector $\vec{D}_1 - \vec{D}_2$ are:



a) (+,+) b) (-,-) c) (+,-) d) (-,+)

20. The position of a particle is given by: $x(t) = 20 t - 5t^3$ (where x is in meters and t in seconds). Is there ever a time when a = 0?

a) t = 0 **b)** t = 30 s **c)** t = 15 s **d)** t = 10 s

21. The vector sum \vec{S} of the vectors in the diagram is equal to:

- **a)** $\vec{S} = \vec{a} + \vec{b} + \vec{c}$ **b)** $\vec{S} = \vec{b} \vec{a} \vec{c}$ **c)** $\vec{S} = \vec{b} + \vec{a} \vec{c}$ **d)** $\vec{S} = \vec{b} + \vec{a}$

Use the following to answer questions 22-23:

Two vectors \vec{a} and \vec{b} of magnitudes 10 units and 6 units, respectively على التوالي , and the angle between the directions of \vec{a} and \vec{b} is 60° .

- **22.** The magnitude of the vector product of \vec{a} and \vec{b} is:
- **a)** 40 units **b)** 52 units **c)** 20 units **d)** 26 units
- **23.** The scalar product of the two vectors \vec{a} and \vec{b} is:
 - **a)** 30 units **b)** 60 units **c)** 50 units **d)** 20 units

- **24.** A vector $2\vec{B}$ has x, y, and z components as 2, 4, and 10, respectively. The vector B can be written as:
 - **a)** $2\hat{i} + 4\hat{j} + 10\hat{k}$ **b)** $2\hat{i} + 2\hat{j} + 10\hat{k}$ **c)** $\hat{i} + 2\hat{j} + 5\hat{k}$ **d)** $2\hat{j} + 5\hat{k}$

- **25.** The x component of vector \vec{a} is $a_x = 2.6$ m, if the angle between \vec{a} and the positive x-axis is - 41°, then the magnitude of \vec{a} is:
 - **a)** 3 m **b)** 2 m **c)** 4.58 m **d)** 3.45 m

- **26.** How long will it take an apple falling from a 29.4 m tall tree to hit the ground?

 - **a)** 3.72 s **b)** 1.56 s **c)** 2.04 s **d)** 2.45 s

- **27.** (0.000 000 0782) is equal to:

 - **a)** 7.82×10^{-6} **b)** 7.82×10^{-8} **c)** 7.82×10^{-9} **d)** 7.82×10^{-7}

Use the following to answer questions 28-30:

If $\vec{a} = 4 \hat{i} - 3 \hat{j}$ and $\vec{b} = 6 \hat{i} + 8 \hat{j}$

- **28.** The direction of \vec{b}
 - **a)** 43^0 **b)** 60^0 **c)** 53^0 **d)** 58^0
- **29.** The magnitude of \vec{a}
 - **a**) 4 **b**) 5 **c**) 6 **d**) 7
- **30.** $\vec{b} \vec{a} =$
 - **a)** $\hat{i} + 3\hat{j}$ **b)** $-2\hat{i} 5\hat{j}$ **c)** $4\hat{i} 3\hat{j}$ **d)** $2\hat{i} + 11\hat{j}$
- 31. A particle moves along the x-axis according to the equation $\mathbf{x} = \mathbf{4} \mathbf{46t} \mathbf{4t}^3$ (where x is in meters and t in seconds), therefore, at t = 0 s:
 - a) The speed is zero
 - **b)** The speed is 46 m/s in the positive direction of x.
 - c) The speed is 50 m/s in the positive direction of x.
 - **d)** The speed is 46 m/s in the negative direction of x.
- 32. The SI units of base quantities (Length, Mass, Time) are
 - **a)** Km, Kg, s **b)** cm, g, s **c)** cm, Kg, s **d)** m, Kg, s
- 33. $(1 \text{ nm})^2 =$
 - **a)** 10^{-18} m² **b)** 10^{+9} m² **c)** 10^{-9} m² **d)** 10^{+18} m²

Answer Key

- **1.** c
- **2.** a
- **3.** c
- **4.** c
- **5.** b
- **6.** a
- **7.** a
- **8.** b
- **9.** a
- **10.** d
- **11.** a
- **12.** a
- **13.** b
- **14.** d
- **15.** a
- **16.** b
- **17.** a
- **18.** b
- **19.** c
- **20.** a
- **21.** c
- **22.** b
- **23.** a
- **24.** c
- **25.** d
- **26.** d
- **27.** b
- **28.** c
- **29.** b
- **30.** d
- **31.** d **32.** d
- **33.** a