\qquad ID: \qquad

Choose the correct answer of the following questions:

(1) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x-4}=$
(A) ∞
(B) 0
(C) 1
(D) -1
(2) The solution of the equation $2^{x-5}=7$ is
(A) $\ln 7$
(B) $\frac{\ln 7}{\ln 2}$
(C) $-\ln 5$
(D) $\frac{\ln 7}{\ln 2}+5$
(3) The domain of the function $f(x)=e^{x}$ is
A) R
(B) $(1, \infty)$
(C) $(0, \infty)$
(D) $(-\infty, 0)$
(4) The vertical asymptotes of $f(x)=\frac{x-1}{x^{2}+2 x-3}$ are:
(A) $x=-3$
(B) $x=-3, x=1$
(C) $y=-3$
(D) $y=-3, \quad y=1$
(5) The solution of the equation $5 \ln x=3$ is
(A) $\frac{1}{\sqrt{e}}$
(B) $e^{-\frac{1}{3}}$
(C) $e^{\frac{3}{5}}$
(D) \sqrt{e}
(6) $\tan (\arctan (5))=$
(A) $\frac{1}{5}$
(B) $\frac{1}{10}$
(C) 10
(D) 5
(7) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=$
(A) $\frac{\pi}{3}$
(B) $-\frac{\pi}{3}$
(C) $-\frac{\pi}{6}$
(D) $\frac{\pi}{6}$
(8) $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=$
(A) -1
(B) 0
(C) 1
(D) does not exist
(9) $g(x)=\left\{\begin{array}{lll}2 x+1 & \text { if } & x \leq 2 \\ x^{2}+1 & \text { if } & x>2\end{array}\right.$, then $\lim _{x \rightarrow 2} g(x)=$
(A) 3
(B) 5
(C) -3
(D) does not exist
(10) From the figure shown: $\lim _{x \rightarrow 0} f(x)=$
(A) 1
(B) -1
(C) 0
(D) does not exist
(11) From the figure shown: $f(2)=2$
(A) True
(B) False

(12) From the figure shown: $\lim _{x \rightarrow 3} f(x)=$
(A) 0
(B) 4
(C) 2
(D) does not exist
(13) If f is a one-to-one function such that $f(3)=-1$, then $f^{-1}(-1)$ is
(A) 9
(B) 3
(C) 2
(D) does not exists
(14) The range of the function $f(x)=e^{x}$ is
A) R
(B) $(1, \infty)$
(C) $(0, \infty)$
(D) $(-\infty, 0)$
(15) The inverse function of the function $f(x)=e^{x}$ is
(A) e^{-x}
(B) $-e^{-x}$
(C) e^{-1}
(D) $\ln x$
(16) $\lim _{x \rightarrow 5} f(x)=7$, then $\lim _{x \rightarrow 5^{-}} f(x)=$
(A) 5
(B) 7
(C) -5
(D) - 7
(17) $\lim _{h \rightarrow 0} \frac{(h+4)^{2}-16}{h}=$
(A) 6
(B) 8
C) -4
(D) -10
(18) If $4 x-9 \leq f(x) \leq x^{2}-4 x+7$, then $\lim _{x \rightarrow 4} f(x)=$
(A) 3
(B) 2
(C) -2
(D) 7
(19) The following function is continuous at the given point:

$$
f(x)=\left\{\begin{array}{ll}
\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\
1 & \text { if } x=2
\end{array} \quad \text { at } x=2\right.
$$

(A) True
(B) False
(20) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$
(A) 0
(B) $\frac{3}{2}$
(C) $\frac{-3}{2}$
(D) $\frac{1}{2}$
(21) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+1}=$
(A) Does not exist
(B) $\frac{3}{2}$
(C) 0
(D) $\frac{1}{2}$
(22) The domain of the function $f(x)=\ln x$ is
A) R
(B) $(0, \infty)$
(C) $(1, \infty)$
(D) $(-\infty, 0)$
(23) $\lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x^{2}-1}=$
(A) Does not exist
(B) 2
(C) -2
(D) $\frac{1}{2}$
(24) A function $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$
(A) True
(B) False
(25) The range of the function $f(x)=\ln x$ is
A) R
(B) $(0, \infty)$
(C) $(1, \infty)$
(D) $(-\infty, 0)$
(26) $\log _{2} 100=2 \log _{2} 10$
(A) True
(B) False
(27) $\lim _{x \rightarrow \infty} \sqrt{x^{2}-1}-x=$
(A) $3 x$
(B) $\sqrt{x^{2}-1}$
(C) 0
(D) ∞
(28) The horizontal asymptote of $f(x)=\frac{x}{x+4}$ is:
(A) $y=1$
(B) $y=2$
(C) $y=-1$
(D) $y=-2$
(29) $\lim _{x \rightarrow \infty} \frac{x^{2}+x}{3-x^{2}}=$
(A) ∞
(B) $-\infty$
(C) 1
(D) -1
(30) The horizontal and vertical asymptotes for $f(x)=\frac{2 x+1}{x-5}$ are:
(A) $y=2, x=5$
(B) $y=5, x=2$.
(C) $y=-1, x=5$
(D) $y=2, x=-6$

