King Abdulaziz University

Rabigh College of Science and Arts

Department of Mathematics

First Exam - Math 110

Date: 27 /6/1439

Time: 90 minutes

Name	ID:	\mathbf{A}
------	-----	--------------

Choose the correct answer of the following questions:

(1)	The solution set of			
	(a) $\left(-3,\infty\right)$	(b) (3,∞)	(c) [3,∞)	(d) $(-\infty, 3)$

(3)
$$|2-e|=$$
(a) $2-e$ (b) $e-2$ (c) $-2-e$ (d) $2+e$

- (6) The equation of the line passes through the point (2,-3) with slope 6 is

 (a) y=5x-15 (b) y=6x-15 (c) y=6x+15 (d) y=5x-3
- (7) The equation of the line passing through (1,-6) and parallel to the line x + 2y = 6 is

 (a) x + 2y = -11 (b) 2x + 3y = 2 (c) x + y = -11 (d) x 2y = 11
- (8) The equation of the line passes through (2,1) and (1,6) is
 (a) 5x y = 11 (b) x + 5y = 11 (c) -x + y = 5 (d) 5x + y = 11
- (9) The slope m and the y intercept b of the line 4x 2y = 10 are

 (a) m = 2, b = -5 (b) m = 5, b = 2 (c) m = -2, b = 5 (d) m = 1, b = 4

The equation for the line passes through (-1,-2) and perpendicular to the line (10)2x + 5y + 8 = 0 is (b) 2x - 5y = 1(c) 5x - 2y = -1(d) x + y = 3(a) 5x - y = -1(11)(a) 120° (b) 250° (c) 300° (d) 150° If a circle has radius 10 cm, the length of the arc subtended by a central angle of (12) $\frac{5\pi}{6}$ rad is 50π 25π 25π (b) (c) (d) (a) $\sin\theta\cot\theta =$ (13)(a) $\sin \theta$ (b) $\tan \theta$ (c) $\sec \theta$ (d) $\cos \theta$ If $\tan \theta = \frac{3}{4}$, $0 \le \theta \le \frac{\pi}{2}$ then $\sec \theta =$ (14) (d) $\tan^2 \theta + 1 =$ (15)(b) $\csc^2 \theta$ (d) $\sin^2 \theta$ (a) $\sec^2 \theta$ (c) $\sec \theta$ The domain of the function $f(t) = \sqrt{t} + \sqrt[3]{t}$ (16)(b) $[0,\infty)$ (d) $(-\infty,\infty)$ (a) $(0,\infty)$ (17)The function $g(x) = \sqrt[5]{x}$ is classified as (a) Polynomial (b) Exponential (c) Power (d) Rational The function $f(x) = \frac{x}{x^2 + 1}$ is (18)(a) Even (c) Neither even nor odd (d) Even and odd (b) Odd

(19) If $y = f(x)$, the graph of $y = f(5x)$ obtained by						
` ,	(a) Shift 5 units upward	(b) Compress horizontally by a factor of 5				
	(c) Reflect about the <i>x</i> -axis	(d) Stretch horizontally by a factor 5				
		(a) a control of a control of				
(20)	If $f(x) = x$ and $g(x) = 3x^2 + x$, then $\left(\frac{f}{g}\right)(x) =$					
	(a) $3x+1$ (b) $\frac{x}{3x^2+1}$	(c) $\frac{1}{3x+1}$ (d) $3x-1$				
(21)	If $f(x) = \frac{x}{1+x}$ and $g(x) = \sin x$	$2x$, then $(g \circ f)(x) =$				
	(a) $\sin\left(\frac{2x}{1+x}\right)$ (b) $\frac{\sin 2x}{1+\sin 2x}$	$\frac{1}{x} \qquad \text{(c)} \sin\left(\frac{2x}{2+2x}\right) \qquad \text{(d)} \frac{\sin x}{1+\sin x}$				
(22)	The graph of $y = \sin x$ is shifted up 8 units and to the right 3 units, the equation for the new graph is					
	(a) $y = \sin(x - 8) + 3$ (b) $y = \sin(x - 3) - 8$					
	(c) $y = \sin(x+3) + 8$ (d) $y = \sin(x-3) + 8$					
	(c) y sin(x + 3) + 0					
(23)	23) If the graph of the function $y = x^2$ is reflected about the x –axis, the equation for the new graph is					
	(a) $y = x^2 + 1$ (b) $y = -x^2$	(c) $y = x^2$ (d) $y = -x^2 - 1$				
(24)	$(24) \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) =$					
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$	$\begin{array}{c c} (c) & \frac{\pi}{6} & (d) & \frac{\pi}{2} \end{array}$				
(25)	(25) The domain of the function $y = \cos^{-1} x$ is					
	(a) $(-1,1)$ (b) $(-\infty,\infty)$	(c) $(1,\infty)$ (d) $[-1,1]$				
(26)	-1					
	(a) $f^{-1}(x) = \sqrt[3]{4x - 2}$ (b) $f^{-1}(x) = 4x - 2$ (c) $f^{-1}(x) = \sqrt{4x - 2}$ (d) $f^{-1}(x) = x^3 + 2$					
(27)	(27) The solution for the equation $ln(10-x)=5$ is					
` ′	(a) $10+e^5$ (b) e^5-10	(c) $5-e^{10}$ (d) $10-e^5$				
(A)- Page 3 of 4						

Use the figure below to solve 28, 29 and 30

(28)	The domain of the function is			
	(a) $[-3, 4]$	(b) $(-1, \infty)$	(c) (0,5]	(d) $[-2,3]$

29)	The range of the function is			
	(a) $[-3, 4]$	(b) $(-1, \infty)$	(c) (0,5]	(d) $[-2,3]$

(30)	f(-3) =			
	(a) -1	(b) 0	(c) -2	(d) 3