King Abdulaziz University

Rabigh College of Science and Arts

Department of Mathematics

First Exam - Math 110

Date: 26/6/1438

Time: 90 minutes

Name	ID:
1 141116	

A

Choose the correct answer of the following questions:

(1)	The solution set of	of the inequality 1	1+5x > 9-3x is		
	$(a)(-\infty,1)$	(b)[1, ∞)	(c)(1,∞)	(d) (-∞, 1]	

(2)	The solution set of the inequality $-5 < 3 + 2x \le 9$ is				
	(a)(-4,3)	(b) [-4,3)	(c) [-4,3]	(d) (-4,3]	

(3)
$$(3)|3-\pi|=$$
 (a) $3-\pi$ (b) $-3-\pi$ (c) $\pi-3$ (d) $3+\pi$

(4)	The solution set of the inequality $ x + 5 \ge 2$ is					
	(a)(-7,-3)	(b) [-7,-3]	$(c)(-\infty,-7]\cup[-3,\infty)$	$(d)(-\infty,-7]\cup(-3,\infty)$		

(5)	The equation of the line passes through the point $(-1,4)$ with slope -3 is					
	(a) 3x + y = 1	(b) $3x - y = 1$	(c) $x + 3y = 1$	$(\mathbf{d})x - 3y = 1$		

(6)	The equation of the	line passing through	(1,-6) and parallel to	the line $x + 2y = 6$ is
	$(\mathbf{a})x + 2y = -11$	(b)x + 2y = 11	(c) $x - 3y = -11$	(d) $x + 3y = 11$

(7)
$$\frac{5\pi}{3} =$$
(a) 120° (b) 300° (c) 75° (d) 150°

(9)	$\tan \theta . \csc \theta =$					
	(a) $\cos \theta$	(b) $\tan \theta$	(c) $\sec \theta$	$(d) \csc \theta$		
(10)	1 2					
(10)	If $\sin \theta = \frac{3}{5}$, $0 \le \theta \le \frac{\pi}{2}$ then $\tan \theta =$					
	$\frac{3}{4}$	$(b) -\frac{3}{}$	(c) $\frac{4}{3}$	(d) $-\frac{4}{3}$		
	4	4	3	3		
(11)			(+ 2 - :			
(11)	If the function	f defined by $f(x)$	$\left(x\right) = \begin{cases} x + 2 & \text{if } x \\ x^2 & \text{if } x \end{cases}$	≤ -1 > -1 , then $f(-1) =$		
	(a) -1	(b) 0	(c)1	(d) 3		
/4 - `				-		
(12)	The equation for $2x - 3y - 1 = 0$ is	or the line passes	through (-1,0) and	d perpendicular to the line		
	(a) 2x - 3y = 3	(b) $2x + 3y = -3$	3 (c) $3x + 2y = -3$	(d) $x - 3y = 3$		
(13)	The domain of the	ne function $f(x)$ =	$= \frac{2x+1}{x(3x-3)}$ is			
	(a) R	(b) $\mathbb{R} - \{3\}$	(c) $\mathbb{R} - \{0, 3\}$			
(14)	<u> </u>	2				
(14)	The function f	$(x) = x + \frac{x^2}{\sqrt{x-1}}$	is classified as			
	(a) Polynomial	(b) Exponential	(c) Algebraic	(d) Rational		
(1.5)	T	2 () 1 2 3 5				
(15)	_	$f(x) = 1 + 3x^3 - x^5$				
	(a)Even	(b)Odd	(c) Neither even n	or odd (d) Even and odd		
/ 4 - 1	T:					
(16)			$P_1(2,0)$ and $P_2(-1,0)$	<u> </u>		
	(a) 3	(b)4	(c) 2	(d)5		
(17)	The domain of t	he function $y = \sqrt[3]{x}$	x is			
	(a) $[0,\infty)$	(b) $(-\infty,\infty)$	(c) $(1,\infty)$	$(d)(0,\infty)$		
(18)	-	1	$\frac{\text{rough } (2,1) \text{ and } (1,6)}{1}$			
	(a) 5x - y = 11	(b) $5x - y = -11$	(c) $5x + y = -11$	(d) 5x + y = 11		

	_						
(19)	The slope m and y – intercept b of the line $2x$						
	(a) $m = -1$, $b = -2$ (b) $m = 5$, $b = 3$ (c) $m = 2$, $b = 3$	p=2 (d) $m=1, b=2$					
(20)	The graph of $y = \sin x$ is shifted up 6 units and right 2 units, the equation for the						
	graph is (a) $y = \sin(x-2) + 6$ (b) $y = \sin(x+2) + 6$ (c) $y = \sin(x-2) - 6$ (d) $y = \sin(x+2)$						
	$(a) y - \sin(x - 2) + 0 \qquad (b) y - \sin(x + 2) + 0 \qquad (c) y$	$-\sin(x-2) = 0$ (d) $y - \sin(x+2)$					
(21)	If the graph of the function $y = a^x$ is reflected al	pout the area exist the equation					
(21)	If the graph of the function $y = e^x$ is reflected all for the new graph is	bout the y —axis, the equation					
	(a) $y = e^x$ (b) $y = -e^{-x}$ (c) $y = -e^x$	(d) $y = e^{-x}$					
		(d) <i>y</i>					
(22)							
(22)	If $f(x) = x^3 - 4x$ and $g(x) = x + 2$, then $\left(\frac{g}{f}\right)$	$\int (x) =$					
	(a) $x(x+2)$ (b) $(x-2)$ (c) $x(x-2)$	(d) $(x + 2)$					
	<u> </u>						
(23)	If $f(x) = \sqrt{x-3}$ and $g(x) = x^2$, then $(f \circ g)$	(x) =					
	(a) $\sqrt{x^2-3}$ (b) $x(x-2)$ (c) x^2	(d) $\sqrt{x-3}$					
(24)	The domain of the function $y = e^x$ is						
	(a) $[0,\infty)$ (b) $(-\infty,\infty)$ (c) $(1,\infty)$	$(d)(0,\infty)$					
(25)	If the graph of $y = e^x$ is compressed vertically by	by a factor of 5, the equation					
, ,	for the new graph is						
	(a) $y = e^x + 5$ (b) $y = 5e^x$ (c) $y = e^{x-5}$	(d) $y = \frac{1}{5}e^x$					
(26)	The range of the function $y = \sqrt{x} + \sqrt{2-x}$ is						
	(a) $(0,2)$ (b) $(-\infty,\infty)$ (c) $(2,\infty)$	(d)[0,2]					
(27)	The function $y = \frac{1}{x}$ is classified as						
	(a) Polynomial (b) Exponential (c) Linear	(d) Power					

Use the figure below to solve 28, 29 and 30

(28)	The domain of the function is				
	(a) $[-1,3]$	(b) $(-1,3)$	(c) (0,3]	(d)[-3,3]	

(29)	The range of the function is				
	(a) [-1,3]	(b) $(-1,3)$	(c) (0,3]	(d)[-3,3]	

(30)	f(1) =				
	(a) 1	(b) 0	(c) 2	(d) 3	