King Abdulaziz University College of Science and Arts – Rabigh Department of Mathematics

Second Semester 2016

MATH 110

First Exam

Time Allowed: 90 Minutes

Name:		
ID No:	 	
Castian		

Choose the correct answer in the following questions:

- (1) The solution of the inequality $3x + 1 \ge 5x + \frac{3}{2}$ is
 - a) $\left|\frac{-1}{4},\infty\right|$
- b) $\left(-\infty, \frac{-1}{4}\right]$
- c) $\left(\frac{1}{4}, \frac{1}{3}\right)$
- d) $\left[\frac{-1}{4}, \frac{1}{3}\right]$
- (2) For each real number x we have

a)
$$|x^2 + 3| = x^2 + 3$$

b)
$$|x^2+3| = -x^2+3$$

c)
$$|x^2 + 3| = x^2 - 3$$

d)
$$|x^2+3| = -x^2-3$$

- c) $|x^2 + 3| = x^2 3$ d) $|x^2 + 3| = -x^2 3$ (3) The solutions of the equation |2x 1| = 5 are
 - a) x = -2; 3
- b) x = -3; 2
- c) x = 2; 3
- (4) The solution set of the inequality $\left| \frac{x-1}{2} \right| > 1$ is
 - a) [-1, 3)

b) $(-\infty, 3]$

- c) $(-1, \infty)$ d) $(-\infty, -1) \cup (3, \infty)$ (5) The slope m for the line -10x + 5y = 15 is
 - (a) 2
- (b) -10
- (c) $\frac{1}{2}$ (d) $-\frac{1}{2}$
- (6) The solution of the inequality $3 < 4x 1 \le 7$ is a) $[1, \infty)$ b) $(-\infty, 2]$

c) (1,2]

- d) $\left(\frac{1}{2}, \frac{3}{2}\right)$
- (7) If the graph of the function $y = \sqrt[3]{x}$ is shifted 3 units to the left and
 - 2 units upward. An equation for the new function is
 - (a) $y = \sqrt[3]{x-3} 2$
- (b) $y = \sqrt[3]{x+3} + 2$
- (c) $v = \sqrt[3]{x-2} 3$
- (d) $v = \sqrt[3]{x+3} 2$

- (8) The slope m and the y-intercept b of the line 4x 2y = 1 are
 - a) m = -2, $b = -\frac{1}{2}$

b) m = -2, $b = \frac{1}{2}$

c) $m=2, b=\frac{1}{2}$

- d) m=2, $b=-\frac{1}{2}$
- (9) An equation for the line passing through (1,0) and parallel to the line 6x - 2y = 4 is
 - a) y = 3x 3

b) $y = \frac{1}{3}x - \frac{1}{3}$

c) y = -3x - 3

- (10) The distance between the points (4,-1) and (3,1) is
 - a) $\sqrt{49}$

b) $\sqrt{5}$

c) 5

- d) 1
- (11) An equation of the line with slop $\frac{-2}{3}$ and passing through (-2,2) is
 - a) 2x + 3y = 1

b) 2x + 3y = 2

c) -3x + 2y = 1

- d) 3x 2y = -10
- (12) The radian measure of 100°
 - a)
- b) $\frac{2\pi}{3}$ c) $\frac{5\pi}{9}$

- (13) If $\sin(\theta) = \frac{4}{5}$ and $0 < \theta < \frac{\pi}{2}$ then $\cos(\theta) = \frac{\pi}{2}$
 - a) $-\frac{5}{3}$

- (14) The value of $|\pi 2| =$
 - (a) $\pi 2$ (b) π
- (c) 2π
- (d) $\pi + 2$

(15) The function $f(x) = \frac{x}{x^2 + 1}$ is					
(A) Even (B) Odd (C) Neither even nor odd (D) Even and odd					
(16) The domain of $f(x) = \sqrt{4-x}$ is					
(A) $(4,\infty)$ (B) $[4,\infty)$ (C) $(-\infty,4]$ (D) $(-\infty,4)$					
(17) The function $f(x) = \frac{x^2 - 1}{x^2 + 1}$ is					
(A) Polynomial (B) Power (C) Quadratic (D) Rational					
(18) Let $f(x) = \sqrt{x+1}$ and $g(x) = \sqrt{x-1}$. Then $(f+g)(x)$ is					
(A) $\sqrt{x+1}$ (B) $\sqrt{x+1} + \sqrt{x-1}$ (C) $\sqrt{x+1} - \sqrt{x-1}$ (D) $\sqrt{x-1}$					
(19) Let $f(x) = \sqrt{x+1}$ and $g(x) = \sqrt{x-1}$. Then the domain of $(f+g)$ is (A) $[1,\infty)$ (B) $(1,\infty)$ (C) $[-1,\infty)$ (D) $[-1,1]$					
(20) Let $f(x) = \sqrt{x-1}$ and $g(x) = x + 4$. Then $(f \circ g)(x)$ is					
(A) \sqrt{x} (B) $\sqrt{x} + 3$ (C) $\sqrt{x+3}$ (D) $\sqrt{x-1}$					
(21) the function $f(x) = 3x^2 - x^4 + 1$ is					
(A) Even (B) Odd (C) Neither even nor odd (D) Even and odd					
(22) The graph of $y = x $ is stretched vertically by a factor 2 and					
compressed horizontally by a factor 5, the equation for the new graph is					
(A) $y = 10 x $ (B) $y = 2 x-5 $ (C) $y = 5 x-2 $ (D) $y = 5 x$					
(23) The function $f(x) = \frac{x^4 - x^3 + 2}{x^2 + \sqrt{x} + 1}$ is					
(A) Algebraic function (B) Polynomial function					
(C) Root function (D) Rational function					
(24) The domain of the function $f(x) = \frac{5x+4}{x^2+3x+2}$ is					
(A) $(-2,-1)$ (B) $R/\{-1,-2\}$					
(C) $[-2,-1]$ (D) R					
(25) If $f(x) = x + 2$ and $g(x) = \sqrt{x - 9}$. Then $\left(\frac{f}{g}\right)(x) =$					
(A) $\frac{1}{x+2}$ (B) $\frac{x+2}{\sqrt{x-9}}$ (C) $\frac{1}{x-2}$ (D) $\frac{\sqrt{x-9}}{x+2}$					

(26) If f(x) = x + 2 and $g(x) = \sqrt{x - 9}$. Then the domain of $\left(\frac{f}{g}\right)$ is

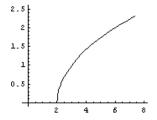
- (A) R

- (B) $(9,\infty)$ (C) $[9,\infty)$ (D) $(-\infty,9) \cup (9,\infty)$

 $(27) \tan(x) =$

- (a) $\frac{\sin(x)}{\cos(x)}$
- (b) $\frac{\cos(x)}{\sin(x)}$ (c) $\frac{1}{\sin(x)}$ (d) $\frac{1}{\cos(x)}$

 $(28) \cos(\frac{\pi}{3}) =$


- a) $\frac{1}{2}$
- b) $-\frac{1}{2}$
- c) $\frac{\sqrt{3}}{2}$ d) $-\frac{\sqrt{3}}{2}$

(29) The eqution of the figure shown is

- a) $y = \sqrt{x} 2$

c) $y = \sqrt{x+2}$

b) $y = 2\sqrt{x}$ d) $y = \sqrt{x-2}$

(30) If the graph of $y = \sqrt{x+1}$ is reflected about the y-axis, the equation for the new graph is

- (A) $y = \sqrt{-x-1}$
- (B) $y = \sqrt{-x+1}$
- (C) $y = -\sqrt{x+1}$
- (D) $y = \sqrt{x-1}$

انتهت الأسئلة