King Abdulaziz University

Rabigh College of Science and Arts

Department of Mathematics

First Exam - Math 110

Date: 20/2/1439

Time: 90 minutes

Name	ID:	\mathbf{A}
Name	ID:	A

Choose the correct answer of the following questions:

(1)	The solution set of the inequality $2x + 1 < 5x - 8$ is				
	$(a)(-\infty,3]$	(b) (−∞,3)	(c) [3,∞)	(d) (3,∞)	

(2)	The solution set of	of the inequality $ 4x $	-2 < 6 is	
	(a)(-1,2)	(b)[-1,2)	(c) [-1,2]	(d)(-1,2]

(3)	$ \pi-2 =$			
	$(a) 2 - \pi$	(b) $-2 - \pi$	(c) $\pi - 2$	(d) $2+\pi$

(4)	The solution set of the inequality $ x + 1 \ge 3$ is				
	(a)(-4,2)	(b) [-4,2]	$(c)(-\infty,-4)\cup(2,\infty)$	$(d)(-\infty,-4]\cup[2,\infty)$	

- (5) The equation of the line passes through the point (2,6) with slope $-\frac{2}{3}$ is
 (a) x + 3y = 6 (b) 3x 2y = 14 (c) 2x + 3y = 22 (d) x 3y = 9
- The equation of the line passing through (-1,3) and parallel to the line 2x + 3y = 5 is

 (a) 2x + 3y = 7 (b) x + 2y = 11 (c) x 3y = -11 (d) 2y 3x = 9
- The equation of the line passing through (-1,3) and perpendicular to the line 2x + 3y = 5 is

 (a) 2x + 3y = 7 (b) x + 2y = 11 (c) x 3y = -11 (d) 2y 3x = 9
- (8) The equation of the line passes through (-1,2) and (3, -4) is (a)3x + 2y = 1 (b) 3x 2y = 14 (c) x + 3y = 6 (d) 3x + 2y = -7

(9)	The slope m and	w_intercent h of th	e line y - 2x - 3 = 0	loro
(9)		(b) $m = 5, b = 2$		(d) $m = 1, b = 2$
	(a) m = 2, b = 3	(0) $m=3, b=2$	(c)m-2, b-3	(a) $m=1, b=2$
(10)	The distance bety	veen the points(2, –	3)and(-4, -3)is	
	(a) 5	(b)6	(c) 7	(d)8
(11)	300° =			
	(a) π rad	$(b)\frac{5\pi}{3}$ rad	(c) $\frac{3\pi}{5}$ rad	$(d)\frac{7\pi}{6}$ rad
(12)	If $\sin \theta = \frac{3}{5}, 0 \le$	$\theta \le \frac{\pi}{2}$ then $\cot \theta =$	=	
	(a) $\frac{3}{4}$	(b) $-\frac{3}{4}$	$(c)\frac{4}{3}$	$(d) - \frac{4}{3}$
(13)	The domain of the	e function $f(x) =$	$\frac{x}{x^2+1}$ is	
	(a)R		(c) $\mathbb{R} - \{-1,1\}$	$(d)\mathbb{R} - \{0,1\}$
		()	(/)	
(14)	The function $f(x)$	$= \sqrt[5]{x}$ is classified	d as	
	(a) Polynomial	$\frac{(b) \text{ Exponential}}{(b)}$	(c)Power	(d) Rational
	, , ,	1 \ / 1		,
(15)	The function $f(x)$	$0 = 1 + 3x^2 - x^4$ is		
(10)	i -		ither even nor odd	(d)Even and odd
(16)	The range of the f	$function y = \log x is$		
	(a) $[0, \infty)$	$(b)(-\infty,\infty)$	(c) (1,∞)	$(d)(0,\infty)$
(1.7)	The graph of $v = 0$	cos <i>x</i> is shifted up 6	units and to the right	t 2 units, the equation for
(17)	the new graph is			

 $(c) y = \cos(x-2) - 6$

(d) $y = \cos(x+2) - 6$

(b) $y = \cos(x+2) + 6$

(a) $y = \overline{\cos(x - 2) + 6}$

(18)	If $f(x) = x - 1a$	and $g(x) = x^3 - 4x$,	then	the domain of	$\left(\frac{g}{f}\right)(x) =$
	(a) ℝ	(b) $\mathbb{R} - \{1\}$	(c)	$\mathbb{R}-\{-2,2\}$	$(d)\mathbb{R}-\{-1\}$

(19)	If $f(x) = \sqrt{x-3}$	and $g(x) = x^2$, the	$\operatorname{en}(f \circ g)(x) =$	
	(a) $\sqrt{x^2 - 3}$	(b) $x(x-2)$	(c) x^{2}	(d) $\sqrt{x-3}$

(20)	If the graph of $y = e^x$ is compressed vertically by a factor of 5 units, the equation for the new graph is			
	(a) $y = e^x + 5$	(b) $y = 5 e^x$	(c) $y = e^{x-5}$	$(d)y = \frac{1}{5}e^x$

(22	()	The solution of the equation $e^{2x+3} - 7 = 0$ is				
		$(a) x = \frac{\ln 7 + 3}{2}$	$(b)x = \frac{\ln 7 - 3}{2}$	$(c) x = \ln 7 - 3$	(d) $x = \frac{\ln 7 - 2}{3}$	

(23)	The solution of the equation $ln(6-3x) = 1$ is				
	(a) x = 2	(b) $x = 3 - \frac{1}{2}e$	(c) $x = 2 + \frac{1}{3}e$	$(d)x = 2 - \frac{1}{3}e$	

(24)	$e^{2 \ln 3} =$				
	(a) 9	(b) 2	(c) 4	(d)8	

(25)
$$\log_2 6 - \log_2 15 + \log_2 20 =$$
(a)1 (b)4 (c)2 (d)3

The inverse of the function of $f(x) = \sqrt[3]{\frac{x+5}{2}}$ is (26)

(a) $f^{-1}(x) = 5x^3 - 2$ (b) $f^{-1}(x) = 2x^2 - 5$ (c) $f^{-1}(x) = 2x^3 - 5$ (d) $f^{-1}(x) = \frac{x+5}{2}$

The function $h(x) = x^5$ is one – to –one (27) (b)False (a)True

Use the figure below to solve 28, 29 and 30:

(28)	The domain of the function is					
	(a)[-1,3]	(b) $[-2,5]$	(c) (0,3]	(d)[-3,4]		

(29)	The range of the function is					
	(a)[-1,3]	(b)[-2,5]	(c) (0,3]	(d)[-3,4]		

(30)	f(3) =				
	(a) 1	(b)-1	(c) 2	(d) 3	