MODEL: D
KING ABDULAZIZ UNIVERSITY

DEPARTMENT OF MATHEMATICS

Exam/Course: Exam I - Math-204

Student Name:
Instructor Name:
Time Allowed: 90 Minutes

Student University Number:

Section:

March 27, 2011
(Q1) Select the correct response with writing the details:
(i) The D.E. $(2 x+3 y-2) y^{\prime}=1$ is
\square exact \square homogeneous \square separable
(ii) The D.E. $\frac{d y}{d x}=\frac{x}{y}+\frac{y}{x}+1$ is
\square exactRicattihomogeneous (2Pt.)
(iii) The D.E. $\frac{d y}{d x}=y^{2}-3 y+2$ is \square exactlinearRicatti
(iv) The D.E. $y^{\prime}=y(1-y)$ has the solution $y=1$ as \square a singular solutiona particular solution
(v) According to the Existence and Uniqueness Theorem the IVP:
$y^{\prime}=y \ln y ; y(0)=1$ has
\square one solution $\quad \square$ an infinitely many solutions \square no solution
$\left(Q_{2}\right)$ A large tank is filled to capacity with 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped into the tank at a rate 4 gallons per minute. The well mixed solution is pumped out at the same rate. Find the number $A(t)$ of pounds of salt in the tank at any time t. What is the concentration $c(t)$ of the salt in the tank at any time t.
$\left(Q_{3}\right)$ Two chemicals A and B are combined to form a chemical C. The rate, or velocity, of the reaction is proportional to the product of the instantaneous amounts of A and B not converted to chemical C. Initially, there are 40 grams of A and 50 grams of B , and for each grams of $\mathrm{B}, 1$ gram of A is used. It is observed that 10 grams of C is formed in 5 minutes. How much is formed in 20 minutes?. What is the limiting amount of C after a long time? (8Pt.)

Answer only three of the following four questions:
$\left(Q_{4}\right)$ Solve: $t^{2} \frac{d y}{d t}+y^{2}=t y ; y(1)=1$ (6Pt.)
$\left(Q_{5}\right)$ Solve: $\left(1+x^{4}\right) d y+x\left(1+4 y^{2}\right) d x=0 ; y(1)=0$
$\left(Q_{6}\right)$ Solve:

$$
\frac{d y}{d x}+y=f(x), \quad y(0)=0, f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ -1 & \text { if } x>1\end{cases}
$$

$\left(Q_{7}\right)$ Solve $\frac{d y}{d x}=3+\sqrt{y-3 x+1}$,

Q1	Q2	Q3	Q4	Q5	Q6	Sum	adapted points

