## King Abdulaziz University

Faculty of Science - Chemistry Department

Chem-110,
Time: 90 minutes

| Name: | Number: Section: |
| :---: | :---: |
| Speed of light, <br> Planck's const., <br> Avogadro's No., <br> Energy const. for H atom <br> Frequency const. for H atom <br> Mass of the electron, <br> Gas constant, | Useful information $\begin{aligned} & \mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \\ & \mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} \\ & \mathrm{~N}_{\mathrm{av}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\ & \mathrm{H} \text { atom } \mathrm{B}=2.179 \times 10^{-18} \mathrm{~J} \\ & \mathrm{~B} / \mathrm{h}=3.289 \times 10^{15} \mathrm{~s}^{-1} \\ & \mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\ & \mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \end{aligned}$ |


(Choose and mark the correct answer)
1- The letter $A$ in the chemical symbol ( $\left.{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}_{\mathrm{f}}^{\mathrm{c}}\right)$ represents:
a- Atomic number
b- mass number
c- charge
d- frequency

2- $\quad$ The unit of force Newton $(\mathrm{N})$ is:
a- $\mathrm{m} \mathrm{s}^{-2}$
b- $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
c- $\mathrm{m} \mathrm{s}^{-1}$
d- $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$

3- $\quad 1.27 \AA$ is equal to:
a- $1.27 \times 10^{-10} \mathrm{~m}$
b- $1.27 \times 10^{-3} \mathrm{~mm}$
c- $1.27 \times 10^{+3} \mathrm{pm}$
d- $1.27 \times 10^{-2} \mathrm{~m}$

4- Cesium atoms are the largest naturally occurring atom. The radius of cesium atom is $2.62 \AA$. How many cesium atoms would have to be laid side by side to give a row of cesium atoms 2.54 cm long? Assume the atoms are spherical.
a- $4.85 \times 10^{7}$
b- $1.91 \times 10^{7}$
c- $3.82 \times 10^{7}$
d- $5.73 \times 10^{7}$

5- The international prototype of the kilogram is a cylinder made from an alloy that is $90.000 \%$ platinum and $10.000 \%$ iridium. How many moles of Pt are in the cylinder?
a- 4.62
b- 0.52
c- $3.133 \times 10^{23}$
d- $2.78 \times 10^{24}$

6- $\quad$ The number of neutrons ( n ) and protons ( p ) in the element zinc $\left({ }_{30}^{65} \mathrm{Zn}^{2+}\right)$ is:
a- $30 \mathrm{n}, 28 \mathrm{p}$
b- $35 \mathrm{n}, 30 \mathrm{p}$
c- $31 \mathrm{n}, 30 \mathrm{p}$
d- $35 \mathrm{n}, 28 \mathrm{p}$

7- Silver occurs in nature as a mixture of two isotopes: ${ }_{47}^{107} \mathrm{Ag}$ and ${ }_{47}^{109} \mathrm{Ag}$. The number of protons in both isotopes $\left({ }_{47}^{107} \mathrm{Ag}\right.$ and $\left.{ }_{47}^{109} \mathrm{Ag}\right)$ is:
a- the same
b- bigger in isotope ${ }_{47}^{107} \mathrm{Ag}$
c- smaller in isotope ${ }_{47}^{107} \mathrm{Ag}$
d- none of the above

8- How many moles of sulfur are there in $3.07 \times 10^{23}$ sulfur-atoms?
a- 0.50 mol
b- 1.0 mol
c- 1.5 mol
d- 2.0 mol

9- Sodium hydrogen carbonate, commonly called "bicarbonate of soda," is used in many commercial products to relieve an upset stomach. It has the simplest formula $\mathrm{NaHCO}_{3}$. The percentage composition of sodium is:
a- $27.38 \%$
b- $1.20 \%$
c- $14.29 \%$
d- $57.14 \%$

10- For the reaction:

$$
2 \mathrm{PbS}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PbO}(\mathrm{~s})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

If 5.30 mol of PbS reacts with oxygen, how many moles of oxygen are needed?
a- 0.0525
b- 7.95
c- 1.35
d- 5.30

11- Naphthalene, contains only carbon and hydrogen. Combustion of a 1.000 g sample of naphthalene gives 0.562 g of water $\mathrm{H}_{2} \mathrm{O}$. What is the mass percent of hydrogen in 1.000 g naphthalene?
a- $6.24 \%$
b- $93.7 \%$
c- 0.0624
d- 0.078

12- The molecular weight of the empirical formula of a compound $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ is $(72 \mathrm{~g} / \mathrm{mol})$, if the molecular weight of the compound is ( $288 \mathrm{~g} / \mathrm{mol}$ ), the molecular formula of the compound is:
a- $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$
b- $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{8}$
c- $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{6}$
d- $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{12}$

13- The number of carbon-atoms in $(0.5 \mathrm{~mol})$ of the aminoacid alanine $\left(\mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COOH}\right)$ is:
a- $9.02 \times 10^{23}$
b- $2.11 \times 10^{24}$
c- $3.01 \times 10^{23}$
d- $6.02 \times 10^{23}$

14- $\quad 1.000$ milliliter ( mL ) equals:
a- $10^{-3} \mathrm{~m}^{3}$
b- $10^{-4} \mathrm{~m}^{3}$
c- $10^{-5} \mathrm{~m}^{3}$
d- $10^{-6} \mathrm{~m}^{3}$

15- The molarity of hydrochloric acid $(\mathrm{HCl})$ prepared by dissolving 18.25 g in 400 mL is:
a- 1.25 M
b- 1.67 M
c- 2.50 M
d- 5.00 M

16- What volume of a 0.05 M HCl solution is required to react with 40.0 mL of a 0.02 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution according the the following equation:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

a- 32.0 mL
b- 16.0 mL
c- 8.0 mL
d- 24.0 mL

17- The number of grams of sodium hydroxide $(\mathrm{NaOH})$ required to prepare a 400 mL of a 0.25 M $(\mathrm{NaOH})$-solution is:
a- 4.0 g NaOH
b- 3.0 g NaOH
c- 2.0 g NaOH
d- 1.00 g NaOH

18- How many grams of $\mathrm{SF}_{4}(\mathrm{~g})$ can theoretically be prepared from 6.00 g of $\mathrm{SCl}_{2}(\mathrm{~g})$ and 3.50 g of $\mathrm{NaF}(\mathrm{s})$ ? The equation of reaction is:

$$
3 \mathrm{SCl}_{2}(\mathrm{~g})+4 \mathrm{NaF}(\mathrm{~s}) \rightarrow \mathrm{SF}_{4}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})+4 \mathrm{NaCl}(\mathrm{~s})
$$

a- $21.0 \mathrm{~g} \mathrm{SF}_{4}$
b- $210 \mathrm{~g} \mathrm{SF}_{4}$
c- $2.10 \mathrm{~g} \mathrm{SF}_{4}$
d- $0.210 \mathrm{~g} \mathrm{SF}_{4}$

19- Chalcopyrite, the principal ore of copper $(\mathrm{Cu})$, contains $34.63 \% \mathrm{Cu}$ by mass. How many grams of Cu can be obtained from $5.11 \times 10^{3} \mathrm{~kg}$ of the ore?
a- $1.77 \times 10^{3} \mathrm{~g}$
b- $1.77 \times 10^{4} \mathrm{~g}$
c- $1.77 \times 10^{5} \mathrm{~g}$
d- $1.77 \times 10^{6} \mathrm{~g}$

20- which atom is most likely to form -3 ion?
a- N
b- Al
c- Ca
d- Rb

21- What mass of silver iodide (AgI) can be made by the reaction of 10.0 g of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ with 10.0 g of sodium iodide $(\mathrm{NaI}) ? \quad \mathrm{AgNO}_{3}(\mathrm{aq})+\Gamma^{-}(\mathrm{aq}) \rightarrow \mathrm{AgI}(\mathrm{s})$
a- 6.91 g
b- 20.74 g
c- 13.8 g
d- 27.65 g

22- Iron(II) sulfate $\left(\mathrm{FeSO}_{4}\right)$ is prescribed for the treatment of anemia. How many moles of $\mathrm{FeSO}_{4}$ are present in a standard 300 mg tablet?
a- $1.19 \times 10^{21} \mathrm{Fe}^{2+}$ ions
b- $1.97 \times 10^{-3} \mathrm{~mol} \mathrm{FeSO}_{4}$
c- $3.95 \times 10^{-3} \mathrm{~mol} \mathrm{FeSO}_{4}$
d- $2.38 \times 10^{21} \mathrm{Fe}^{2+}$ ions

23- Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ reacts with isopentyl alcohol $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\right)$ to yield isopentyl acetate $\left(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}\right)$, a fragrant substance with the odor of bananas. If the yield from the reaction of acetic acid with isopentyl alcohol is $45 \%$, how many grams of isopentyl acetate are formed from 3.58 g of acetic acid and 4.75 g of isopentyl alcohol? The reaction is:

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O} \rightarrow \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

a- 3.86 g
b- 4.56 g
c- 3.2 g
d- 2.46 g

24- The number of moles of $\mathrm{CO}_{2}$ resulted from the reaction of 3.5 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ with excess oxygen according to the equation $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ is:
a- 7.0 moles
b- 9.0 moles
c- 10.5 moles
d- 13.5 moles

25- The mass of chlorine that reacts with 4.770 g of hydrogen to form hydrogen chloride according the following equation

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

is:
a- 4.770 g
b- 174.1 g
c- 84.67 g
d- 169.3 g

26- How many grams of KOH is required to prepare a 0.25 liter of 0.3 M KOH solution?
a- 5.6 g KOH
b- 6 g KOH
c- 4.2 g KOH
d- 12 g KOH

27- The molecular formula of a compound having a molecular weight $28(\mathrm{~g} / \mathrm{mol})$ and an empirical formula $\mathrm{CH}_{2}$ is:
a- $\mathrm{C}_{6} \mathrm{H}_{6}$
b- $\mathrm{C}_{6} \mathrm{H}_{12}$
c- $\mathrm{C}_{2} \mathrm{H}_{2}$
d- $\mathrm{C}_{2} \mathrm{H}_{4}$

28- In an experiment, the actual yield was 5.35 g and the theoretical yield was 8.3 g what is the percentage yield of the product?
a- $52.4 \%$
b- $64.5 \%$
c- $40.4 \%$
d- $76.5 \%$

29- The molecular weight of NaOH is:
a- $56 \mathrm{~g} / \mathrm{mol}$
b- $63 \mathrm{~g} / \mathrm{mol}$
c- $16 \mathrm{~g} / \mathrm{mol}$
d- $40 \mathrm{~g} / \mathrm{mol}$

30- The element with the number of protons $=20$, neutrons $=20$, and electrons $=20$ is:
a- Ca
b- Se
c- K
d- Au

31- 0.90 g of a sample contains 0.80 g carbon and 0.10 g hydrogen. What is the empirical formula of the compound?
a- $\mathrm{C}_{2} \mathrm{H}_{3}$
b- $\mathrm{CH}_{3}$
c- $\mathrm{CH}_{2}$
d- CH

32- Genes are considered to be composed of a substance known as DNA. In a particular sample, the average mass of a DNA molecule is $1.0 \times 10^{-15} \mathrm{~g}$. Calculate the molecular mass of DNA.
a- $6.02 \times 10^{8} \mathrm{~g} / \mathrm{moL}$
b- $6.02 \times 10^{9} \mathrm{~g} / \mathrm{mol}$
c- $6.02 \times 10^{7} \mathrm{~g} / \mathrm{mol}$
d- $6.02 \times 10^{10} \mathrm{~g} / \mathrm{mol}$

33- The mass of one argon atom $\left({ }_{18}^{40} \mathrm{Ar}\right)$ in grams is:
a- $2.32 \times 10^{-23} \mathrm{~g}$
b- $6.64 \times 10^{-23} \mathrm{~g}$
c- $9.30 \times 10^{-23} \mathrm{~g}$
d- $1.66 \times 10^{-24} \mathrm{~g}$

34- The mass of 10.0 billion $\mathrm{SO}_{2}$ molecules in grams is:
a- $1.06 \times 10^{-10} \mathrm{~g}$
b- $1.06 \times 10^{-11} \mathrm{~g}$
c- $1.06 \times 10^{-12} \mathrm{~g}$
d- $1.06 \times 10^{-13} \mathrm{~g}$

35- The percentage composition of nitrogen atoms in ammonium sulfate $\left\{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right\}$ is:
a- $48.48 \%$
b- $24.24 \%$
c- $21.21 \%$
d- $6.061 \%$

36- The number of sulfur atoms in 39.6 g of ammonium sulfate $\left\{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right\}$ is:
a- $3.61 \times 10^{23}$
b- $1.44 \times 10^{24}$
c- $1.81 \times 10^{23}$
d- $7.23 \times 10^{23}$

37- The Analysis of an air pollutant of a sample of pure compound reveals that it contains $57.1 \%$ sulfur and $42.9 \%$ oxygen by mass. The empirical formula of the pollutant is:
a- SO
b- $\mathrm{SO}_{2}$
c- $\mathrm{SO}_{3}$
d- $\mathrm{S}_{2} \mathrm{O}_{3}$

38- A 20.882 gram sample of an ionic compound is found to contain 4.327 g of sodium, Na , 6.020 g of sulfur, S , and 10.535 g of oxygen, O . The empirical formula of the ionic compound is:
a- $\mathrm{Na}_{2} \mathrm{SO}_{3}$
b- $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
c- $\mathrm{Na}_{2} \mathrm{SO}_{4}$
d- $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

39- What mass of potassium permanganate, $\mathrm{KMnO}_{4}$, would contain 18.5 g of manganese, Mn ? a- $44.53 \mathrm{~g} \mathrm{KMnO}_{4} \quad$ b- $30.2 \mathrm{~g} \mathrm{KMnO}_{4} \quad$ c- $53.1 \mathrm{~g} \mathrm{KMnO}_{4} \quad$ d- $35.9 \mathrm{~g} \mathrm{KMnO}_{4}$

40- Nitric oxide, NO, is produced according to the following equation: $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$ What mass of oxygen is combined with 2.00 g of nitrogen in NO?
a- 2.29 g oxygen
b- 5.71 g oxygen
c- 4.57 g oxygen
d- 3.43 g oxygen

41- What is the volume of a 0.324 M solution of sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, that is required to react with 4.37 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, according to the equation:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\text { a- } 81.3 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4} \quad \text { b- } 78.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4} \quad \text { c- } 127.2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4} \quad \text { d- } 81.3 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{gathered}
$$

42- The mass of nickel sulfate, $\mathrm{NiSO}_{4}$, contained in 350 g of a $6.00 \% \mathrm{NiSO}_{4}$-solution is:
a- $18.0 \mathrm{~g} \mathrm{NiSO}_{4}$
b- $15.0 \mathrm{~g} \mathrm{NiSO}_{4}$
c- $12.0 \mathrm{~g} \mathrm{NiSO}_{4}$
d- $21.0 \mathrm{~g} \mathrm{NiSO}_{4}$

43- The molarity, M , of a solution that contains 365 g of HCl in 2.00 liters of solution is:
a- 5.0 M
b- 0.50 M
c- 0.05 M
d- 0.005 M

44- The mass of $\mathrm{Ba}(\mathrm{OH})_{2}$ required to prepare 4.50 liters of a 0.060 molar solution of barium hydroxide is:
a- 15.4 g
b- 35.9 g
c- 46.2 g
d- 25.7 g

45- The volume of $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required to prepare 1.00 liter of 0.0090 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$, is
a- 50.0 mL
b- 5.0 mL
c- 500 mL
d- 0.5 mL

46- A 4.36 L sample of a 2.36 M NaOH -solution reacts completely with 3.67 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$-solution according to the equation:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
\text { a- } 0.014 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \quad \text { b- } 0.140 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{gathered} \text { c- } 14.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \quad \text { d- } 1.40 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} .
$$

47- How many moles of solute are contained in 100 g of $0.40 \%$ aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}$ ?
a- $3.85 \times 10^{-3} \mathrm{~mol}$
b- $5.13 \times 10^{-3} \mathrm{~mol}$
c- $3.21 \times 10^{-3} \mathrm{~mol}$
d- $4.49 \times 10^{-3} \mathrm{~mol}$

48- How many grams of solute are contained in the solution of question (D18)?
a- $0.35 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}$
b- $0.40 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}$
c- $0.30 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}$
d- $0.25 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}$

49- How many grams of water (the solvent) are contained in the solution of question (D18)?
a- $99.75 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
b- $99.70 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
c- $99.60 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
d- $99.65 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

50- The percent yield is $83.2 \%$.for the following reaction: $\quad \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5} \quad$ is $83.2 \%$. What mass of $\mathrm{PCl}_{5}$ would be expected from the reaction of 64.3 g of $\mathrm{PCl}_{3}$ with excess $\mathrm{Cl}_{2}$ ?
a- 71.5 g
b- 81.1 g
c- 58.9 g
d- 96.8 g

51- How many grams of the agent $\mathrm{Na}_{3} \mathrm{PO}_{4}$, are needed to prepare 125 mL of 0.40 M solution.
a- 32.8 g
b- 16.4 g
c- 23.0 g
d- 8.2 g

52- What mass of potassium can be produced by the reaction of 150.0 g of Na with 100.0 g of KCl ?
$\mathrm{Na}+\mathrm{KCl} \rightarrow \mathrm{NaCl}+\mathrm{K}$
a- 130.9 g
b- 104.7 g
c- 78.5 g
d- 52.3 g

53- Commercial concentrated hydrochloric acid, HCl , is 12.0 M . What volume of concentrated hydrochloric acid is required to prepare 4.50 L of 2.60 M HCl solution?
a- 675 mL
b- 37.5 mL
c- 750 mL
d- 975 mL

54- Calculate the resulting molarity when 200 mL of $6.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with 245 mL of
$3.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
a- 4.348 M
b- 4.014 M
c- 4.5 M
d- 4.12 M

55- Which of the following is an element?
a- polonium
b- water
c- sugar
d- carbon dioxide

56- Which of the following is a compound?
a- cobalt
b- water
c- polonium
d- gold

57- $\quad(\mathrm{Sb})$ is the chemical symbol for:
a- bismuth
b- tungsten
c- antimony
d- zinc

58- Measurements show that 1.0 g of iron $(\mathrm{Fe})$ contains $1.1 \times 10^{22} \mathrm{Fe}$ atoms. How many Fe atoms are in 0.0049 g of Fe ?
a- $5.4 \times 10^{22}$
b- $5.4 \times 10^{20}$
c- $5.4 \times 10^{21}$
d- $5.4 \times 10^{19}$

59- A $1.0-\mathrm{mL}$ volume of seawater contains about $3.8 \times 10^{-12} \mathrm{~g}$ of gold. The total volume of ocean water is $1.5 \times 10^{21} \mathrm{~L}$. Calculate the total amount of gold (in grams) that is present in seawater
a- $6.0 \times 10^{12} \mathrm{~g}$
b- $6.2 \times 10^{12} \mathrm{~g}$
c- $5.9 \times 10^{12} \mathrm{~g}$
d- $5.7 \times 10^{12} \mathrm{~g}$

60- Convert $0.106 \mathrm{~kg} / \mathrm{m}^{3}$ to $\mathrm{g} / \mathrm{cm}^{3}$
a- 0.106
b- 0.0106
c- 0.000106
d- 0.00106

61- If 10.0 moles of $\mathrm{CH}_{4}$ are burned in an excess of oxygen, what is the volume of $\mathrm{CO}_{2}$ (in liters) produced at $23.0^{\circ} \mathrm{C}$ and 0.985 atm according to the following equation?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

a- 370 L
b- 345 L
c- 296 L
d- 246 L

62- The empirical formula of a compound is CH. If 0.193 g of this compound occupies 97.2 mL at $200^{\circ} \mathrm{C}$ and a pressure of 0.74 atm . What is the molecular formula of the compound?
a- $\mathrm{C}_{8} \mathrm{H}_{8}$
b- $\mathrm{C}_{2} \mathrm{H}_{2}$
c- $\mathrm{C}_{6} \mathrm{H}_{6}$
d- $\mathrm{C}_{4} \mathrm{H}_{4}$

