King Abdulaziz University

Faculty of Science - Chemistry Department

Chem-110,

Time: 90 minutes

1 H Hydrogen 1	PERIODIC TABLE Relative atomic mass to nearest whole number									4 He Helium 2							
7 Li Lithium 3	9 Be Beryllium 4			12 C	—	Sym		ore ma				11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Flourine 9	20 Ne Neon 10
Na Na Sodium	Mg Magnesium 12			Carbon 6	<u></u>	Atom	nic nur	nber				27 Al Aluminum 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfür 16	35.5 Cl Chlorine 17	40 Ar Argon 18
39 K Potassium 19	Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	Co Cobalt 27	59 Ni Nickel 28	63.5 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	72.5 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine	Kr Kr _{Krypton}
85.5 Rb Rubidium 37	86 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	(96) Tc Technetium 43	101 Ru Ruthenium 44	Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	Int Int Indium 49	119 Sn Tin 50	122 Sb Antimony 51	Te Te Tellurium 52	127 I Iodine 53	131 Xe Xenon 54
133 Cs Cesium 55	137 Ba Barium 56	139 La Lanthanum 57	178.5 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 Tl Thallium 81	207 Pb Lead 82	Bi Bi Bismuth 83	(210) Po Polonium 84	(210) At Astatine 85	(222) Rn Radon 86
(223) Fr Francium 87	(226) Ra Radium 88	(227) Ac Actinium 89	(261) Rf Rutherfordium 104	(262) Db Dubnium 105	(266) Sg Seaborgium 106	(264) Bh Bohrium 107	(265) Hs Hassium 108	(268) Mt Meitnerium 109									

140	141	144	145	150	152	157	159	162.5	165	167	169	173	175
Ce Cerium 58	Pr Praseodymium 59	Nd Neodymium 60	Pm Promethium 61	Sm Samarium 62	Eu Europium 63	Gd Gadolinium 64	Tb Terbium 65	Dy Dysprosium 66	Ho Holmium 67	Er Erbium 68	Tm Thulium 69	Yb Ytterbium 70	Lu Lutetium 71
232	231	238	237	244	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
Th Thorium 90	Pa Protactinium 91	U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

(Cho	oose and mark the corre	ct answer)							
1-	The letter A in the chemical symbol $({}_{Z}^{A}X_{f}^{c})$ represents:								
	a- Atomic number	b- mass number	c- charge	d- frequency					
2-	The unit of force Ne	ewton (N) is:							
	a- ${\rm m} {\rm s}^{-2}$	b- $kg m^2 s^{-2}$	c- m s ⁻¹	d- kg m s $^{-2}$					
3-	1.27 Å is equal to:								
	a- $1.27 \times 10^{-10} \text{ m}$	b- 1.27×10^{-3}	mm c- 1.27 x 10 ⁺³ pr	m d- $1.27 \times 10^{-2} \text{ m}$					
4-	Cesium atoms are th	ne largest naturally occur	ring atom. The radius of o	cesium atom is 2.62 Å					
	How many cesium atoms would have to be laid side by side to give a row of cesium atom								
	2.54 cm long? Assur	me the atoms are spheric	al.						
	a- 4.85×10^7	b- 1.91 x 10 ⁷	c- 3.82×10^7	d- 5.73×10^7					
5-	The international prototype of the kilogram is a cylinder made from an alloy that is 90.000%								
	platinum and 10.000%	iridium. How many mo	les of Pt are in the cylind	er?					
	a- 4.62	b- 0.52	c- 3.133×10^{23}	d- 2.78×10^{24}					
6-	The number of neutr	rons (n) and protons (p) i	in the element zinc $\binom{65}{30}$ Zn	²⁺) is:					
	a- 30 n, 28 p	b- 35 n, 30 p	c- 31 n, 30 p	d- 35 n, 28 p					
7-	Silver occurs in nature as a mixture of two isotopes: $^{107}_{47}$ Ag and $^{109}_{47}$ Ag. The number of								
	protons in both isotop	es (${}^{107}_{47}$ Ag and ${}^{109}_{47}$ Ag) is:							
	a- the same		b- bigger in isoto	ope ¹⁰⁷ ₄₇ Ag					

d- none of the above

c- 14.29%

d- 2.0 mol

d- 57.14%

c- 1.5 mol

Sodium hydrogen carbonate, commonly called "bicarbonate of soda," is used in many commercial products to relieve an upset stomach. It has the simplest formula NaHCO₃. The

c- smaller in isotope $^{107}_{47}\mathrm{Ag}$

percentage composition of sodium is:

a- 0.50 mol

a- 27.38%

8-

9-

How many moles of sulfur are there in 3.07×10^{23} sulfur-atoms?

b- 1.0 mol

b- 1.20%

10- For the reaction:

$$2 \text{ PbS (s)} + 3 O_2 (g) \rightarrow 2 \text{ PbO (s)} + 2 \text{ SO}_2 (g)$$

If 5.30 mol of PbS reacts with oxygen, how many moles of oxygen are needed?

a- 0.0525

b- 7.95

c- 1.35

d- 5.30

Naphthalene, contains only carbon and hydrogen. Combustion of a 1.000 g sample of naphthalene gives 0.562 g of water H_2O . What is the mass percent of hydrogen in 1.000 g naphthalene?

a- 6.24%

b- 93.7%

c- 0.0624

d- 0.078

12- The molecular weight of the empirical formula of a compound (C₃H₄O₂) is (72 g/mol), if the molecular weight of the compound is (288 g/mol), the molecular formula of the compound is:

a- C₆H₈O₄

 $b- C_{12}H_{16}O_8$

c- C₉H₁₂O₆

 $d\text{-}\ C_{18}H_{24}O_{12}$

13- The number of carbon-atoms in (0.5 mol) of the aminoacid alanine (CH₃CHNH₂COOH) is:

a- 9.02×10^{23}

b- 2.11 x 10²⁴

 $c-3.01 \times 10^{23}$

d- 6.02×10^{23}

14- 1.000 milliliter (mL) equals:

a- 10^{-3} m^3

 $b- 10^{-4} \text{ m}^3$

 $c- 10^{-5} \text{ m}^3$

 $d-10^{-6} \text{ m}^3$

15- The molarity of hydrochloric acid (HCl) prepared by dissolving 18.25 g in 400 mL is:

a- 1.25 M

b- 1.67 M

c- 2.50 M

d- 5.00 M

What volume of a 0.05 M HCl solution is required to react with 40.0 mL of a 0.02 M Na₂CO₃ solution according the the following equation:

$$Na_2CO_3 + 2 HC1 \rightarrow 2 NaC1 + CO_2 + H_2O$$

a- 32.0 mL:

b- 16.0 mL

c- 8.0 mL

d- 24.0 mL

17- The number of grams of sodium hydroxide (NaOH) required to prepare a 400 mL of a 0.25 M (NaOH)-solution is:

a- 4.0 g NaOH

b- 3.0 g NaOH

c- 2.0 g NaOH

d- 1.00 g NaOH

18- How many grams of SF_4 (g) can theoretically be prepared from 6.00 g of SCl_2 (g) and 3.50 g of NaF(s)? The equation of reaction is:

$$3 \text{ SCl}_2(g) + 4 \text{ NaF}(s) \rightarrow \text{SF}_4(g) + \text{S}_2\text{Cl}_2(l) + 4 \text{ NaCl}(s)$$

a- 21.0 g SF₄

b- 210 g SF₄ c- 2.10 g SF₄ d- 0.210 g SF₄

19-Chalcopyrite, the principal ore of copper (Cu), contains 34.63%Cu by mass. How many grams of Cu can be obtained from 5.11 x 10³ kg of the ore?

a- $1.77 \times 10^3 \text{ g}$

b- 1.77×10^4 g c- 1.77×10^5 g d- 1.77×10^6 g

20which atom is most likely to form -3 ion?

a- N

b- Al

c- Ca

d- Rb

21-What mass of silver iodide (AgI) can be made by the reaction of 10.0 g of silver nitrate

(AgNO₃) with 10.0 g of sodium iodide (NaI)? AgNO₃ (aq) + Γ (aq) \rightarrow AgI (s)

a- 6.91 g

b- 20.74 g

c- 13.8 g

d- 27.65 g

22-Iron(II) sulfate (FeSO₄) is prescribed for the treatment of anemia. How many moles of FeSO₄ are present in a standard 300 mg tablet?

a- $1.19 \times 10^{21} \,\mathrm{Fe^{2+}}$ ions

b- 1.97 x 10⁻³ mol FeSO₄

c- 3.95 x 10⁻³ mol FeSO₄

d- $2.38 \times 10^{21} \text{ Fe}^{2+} \text{ ions}$

23-Acetic acid (CH₃CO₂H) reacts with isopentyl alcohol (C₅H₁₂O) to yield isopentyl acetate $(C_7H_{14}O_2)$, a fragrant substance with the odor of bananas. If the yield from the reaction of acetic acid with isopentyl alcohol is 45%, how many grams of isopentyl acetate are formed from 3.58 g of acetic acid and 4.75 g of isopentyl alcohol? The reaction is:

$$CH_{3}COOH \ + \ C_{5}H_{12}O \ \to \ C_{7}H_{14}O_{2} \ + \ H_{2}O$$

a- 3.86 g

d- 2.46 g

24-The number of moles of CO₂ resulted from the reaction of 3.5 moles of C₂H₆ with excess oxygen according to the equation $2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$ is:

a- 7.0 moles

b- 9.0 moles

c- 10.5 moles

d- 13.5 moles

25-The mass of chlorine that reacts with 4.770 g of hydrogen to form hydrogen chloride $H_2 + Cl_2 \rightarrow 2 HCl$ according the following equation is:

	a- 4.770 g	b- 174.1 g	c- 84.67 g	d- 169.3 g					
26-	How many grams of	KOH is required to p	orepare a 0.25 liter of 0	.3 M KOH solution ?					
	a- 5.6 g KOH	b- 6 g KOH	c- 4.2 g KOI	d- 12 g KOH					
27-	The molecular formula of a compound having a molecular weight 28 (g/mol) and an empirical formula CH ₂ is:								
	a- C ₆ H ₆	b- C ₆ H ₁₂	c- C ₂ H ₂	$d-C_2H_4$					
28-	In an experiment, the actual yield was 5.35 g and the theoretical yield was 8.3 g what is the percentage yield of the product?								
	a- 52.4%	b- 64.5%	c- 40.4%	d- 76.5%					
29-	The molecular weight a- 56 g/mol	t of NaOH is: b- 63 g/mo	l c- 16 g/mol	d- 40 g/mol					
30-	The element with the	number of protons =	= 20, neutrons = 20, and	electrons = 20 is:					
	a- Ca	b- Se	c- K	d- Au					
31-	0.90 g of a sample co	_	and 0.10 g hydrogen. V	What is the empirical					
	a- C_2H_3	b- CH ₃	c- CH ₂	d- CH					
32-		_							

The mass of one argon atom $\binom{40}{18}$ Ar) in grams is: 33a- 2.32×10^{-23} g b- 6.64×10^{-23} g c- 9.30×10^{-23} g d- 1.66×10^{-24} g

34- The mass of 10.0 billion SO_2 molecules in grams is:

a- $1.06 \times 10^{-10} \, g$ b- $1.06 \times 10^{-11} \, g$ c- $1.06 \times 10^{-12} \, g$ d- $1.06 \times 10^{-13} \, g$

35- The percentage composition of nitrogen atoms in ammonium sulfate $\{(NH_4)_2SO_4\}$ is:

36- The number of sulfur atoms in 39.6 g of ammonium sulfate $\{(NH_4)_2SO_4\}$ is: a- 3.61 x10²³ b- 1.44 x 10²⁴ c- 1.81 x 10²³ d- 7.23 x 10²³

37- The Analysis of an air pollutant of a sample of pure compound reveals that it contains 57.1% sulfur and 42.9% oxygen by mass. The empirical formula of the pollutant is:

a- SO b- SO_2 c- SO_3 d- S_2O_3

38- A 20.882 gram sample of an ionic compound is found to contain 4.327 g of sodium, Na, 6.020 g of sulfur, S, and 10.535 g of oxygen, O. The empirical formula of the ionic compound is:

 $a\hbox{-}\ Na_2SO_3 \qquad \qquad b\hbox{-}\ Na_2S_2O_7 \qquad \qquad c\hbox{-}\ Na_2SO_4 \qquad \qquad d\hbox{-}\ Na_2S_2O_3$

- 39- What mass of potassium permanganate, KMnO₄, would contain 18.5 g of manganese, Mn? a- 44.53 g KMnO₄ b- 30.2 g KMnO₄ c- 53.1 g KMnO₄ d- 35.9 g KMnO₄
- 40- Nitric oxide, NO, is produced according to the following equation: $N_2 + O_2 \rightarrow 2$ NO What mass of oxygen is combined with 2.00 g of nitrogen in NO? a- 2.29 g oxygen b- 5.71 g oxygen c- 4.57 g oxygen d- 3.43 g oxygen

41- What is the volume of a 0.324 M solution of sulfuric acid, H₂SO₄, that is required to react with 4.37 g of Na₂CO₃, according to the equation:

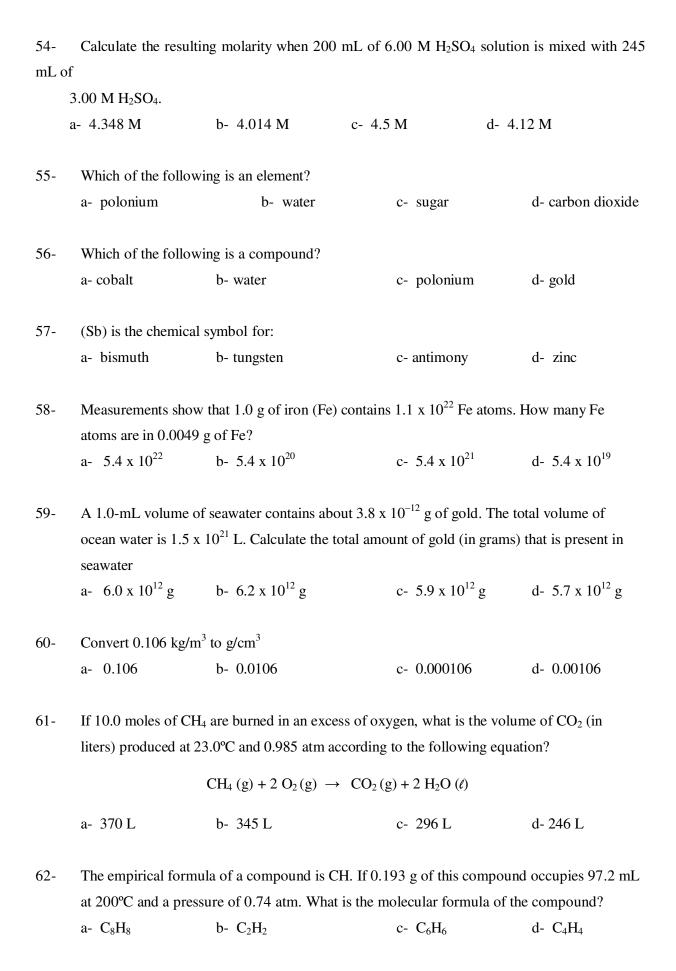
$$H_2SO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + CO_2 + H_2O$$

a- 81.3 mL H₂SO₄ b- 78.0 mL H₂SO₄ c- 127.2 mL H₂SO₄ d- 81.3 mL H₂SO₄

42- The mass of nickel sulfate, NiSO₄, contained in 350 g of a 6.00% NiSO₄-solution is:

a- 18.0 g NiSO₄ b- 15.0 g NiSO₄ c- 12.0 g NiSO₄ d- 21.0 g NiSO₄

43- The molarity, M, of a solution that contains 365 g of HCl in 2.00 liters of solution is: a- 5.0 M b- 0.50 M c- 0.05 M d- 0.005 M


44- The mass of Ba(OH)₂ required to prepare 4.50 liters of a 0.060 molar solution of barium hydroxide is:

a- 15.4 g b- 35.9 g c- 46.2 g d- 25.7 g

45-	The volume of 18.0 M	H ₂ SO ₄ required to pre	epare 1.00 liter of 0.00	90 M solution of H ₂ SO ₄ , is				
	a- 50.0 mL	b- 5.0 mL	c- 500 mL	d- 0.5 mL				
46-	A 4.36 L sample of a solution. What is the m		-	with 3.67 mL of H_2SO_4 - quation:				
	$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$							
	a- 0.014 M H ₂ SO ₄	b- 0.140 M H ₂ SO ₄	c- 14.0 M H ₂ SO ₄	d- 1.40 M H ₂ SO ₄				
47-	How many moles of a- 3.85 x 10 ⁻³ mol	solute are contained in b- 5.13 x 10 ⁻³ mol	-					
48-	How many grams of	solute are contained in	the solution of question	on (D18)?				
	a- 0.35 g Na ₂ S	b- 0.40 g Na ₂ S	c- 0.30 g Na ₂ S	d- 0.25 g Na ₂ S				
49-	How many grams of	water (the solvent) are	contained in the soluti	on of question (D18)?				
	a- 99.75 g H ₂ O	b- 99.70 g H ₂ O	c- 99.60 g H ₂ O	d- 99.65 g H ₂ O				
50-	The percent yield is 8	83.2%.for the following	g reaction: PCl ₃ -	$+ Cl_2 \rightarrow PCl_5$ is 83.2%.				
	What mass of PCl ₅ wo	uld be expected from t	he reaction of 64.3 g o	f PCl ₃ with excess Cl ₂ ?				
	a- 71.5 g	b- 81.1 g	c- 58.9 g	d- 96.8 g				
51-	How many grams of	the agent Na ₃ PO ₄ , are	needed to prepare 125	mL of 0.40 M solution.				
	a- 32.8 g	b- 16.4 g	c- 23.0 g	d- 8.2 g				
52- KCl	-	sium can be produced	by the reaction of 150	.0 g of Na with 100.0 g of				
	$Na + KCl \rightarrow NaCl + K$							
	a- 130.9 g	b- 104.7 g	c- 78.5 g	d- 52.3 g				

53- Commercial concentrated hydrochloric acid, HCl, is 12.0 M. What volume of concentrated hydrochloric acid is required to prepare 4.50 L of 2.60 M HCl solution?

a- 675 mL b- 37.5 mL c- 750 mL d- 975 mL

