Chapter 4

The Electronic Structure

囫		1
20		a
-		[
3-1		
	ys.	1990.0.
4		Cobess
速	-9meger	
	 	oreseng

Electromagnetic Radiation

- Electromagnetic radiation has some of the properties of both a particle and a wave.

- Particles: have a definite mass and they occupy space.
- Wave have no mass and yet they carry energy as they travel through space.

Waves have four other characteristic properties: speed, frequency, wavelength, and amplitude.

The frequency (v) is the number of waves (or cycles) per unit of time and its units of cycles per second ($\mathrm{s}-1$) or hertz (Hz).

The wavelength (() is the smallest distance between repeating points on the wave. The product of the frequency (v) times the wavelength ($)$ of a wave is therefore the speed (s) at which the wave travels through space.

The product of the frequency (v) times the wavelength ${ }^{\text {wins. }}$ (λ) of a wave is therefore the speed (s) at which the wave travels through space.

$$
s=v \lambda \quad \text { or } \quad \nu=s / \lambda
$$

What is the speed of a wave that has a wavelength of 1 meter and a frequency of 60 cycles per second?
$\lambda=1 \mathrm{~m}$ and $v=60$ cycles per second (Hz)
$s=v \lambda=60(\mathrm{~Hz}) \times 1 \mathrm{~m}=60 \mathrm{~m}$ per second

- Light is a wave with both electric and magnetic components. It is therefore a form of electromagnetic radiation.

The product of the frequency times the wavelength of electromagnetic radiation is always equal to the speed of light (c), $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

$$
c=v \lambda \quad \text { or } \quad v=c / \lambda
$$

Calculate the frequency of red light that has a

 wavelength of 700.0 nm if the speed of light is $3.00^{\prime \prime \prime} \times$ $10^{8} \mathrm{~m} / \mathrm{s}$.$$
\lambda=700.0 \mathrm{~nm}=700.0 \times 10^{-9} \mathrm{~m} \quad \text { and } \quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$$
c=v \lambda \text { or } v=c / \lambda
$$

$$
\begin{equation*}
v=3.00 \times 10^{8}(\mathrm{~m} / \mathrm{s}) / 700.0 \times 10^{-9} \tag{m}
\end{equation*}
$$

$$
v=4.29 \times 10^{14}\left(\mathrm{~s}^{-1}\right) \text { or } \mathrm{Hz}
$$

Ephoton $=\mathbf{h} \mathbf{v}$

Particle-Like Behavior of Light and Planck's Equation

Light is composed of particles called photons.
The energy of this photon is equal to the frequency of the light times a constant and can be calculated using the formula:

$$
E_{\text {photon }}=h v
$$

where E is the energy of the photon, v is the frequency and h is called Plank's constant, $h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

What is the energy (in kilojoules) of photons of radar waves with a frequency equal $4.00 \times 10^{8} \mathrm{~Hz}$? Using the formula $E_{\text {photon }}=h v$

$$
\begin{aligned}
E & =\left(6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right) \times\left(4.00 \times 10^{8} \mathrm{~s}^{-1}\right) \\
& =2.65 \times 10^{-25} \mathrm{~J}=2.65 \times 10^{-28} \mathrm{~kJ}
\end{aligned}
$$

What is the wavelength, in nanometers, of light that has an energy content of $508 \mathrm{~kJ} / \mathrm{mol}$ photons?

$$
\begin{aligned}
& \text { Energy }=508 \mathrm{~kJ} / \mathrm{mol} \text { photons } \times\left(\frac{\mathbf{1 0 0 0 J}}{\mathbf{1 k J}}\right) \mathbf{x}\left(\frac{\mathbf{1 m o l e p h o t o n}}{\mathbf{6 . 0 2 3 \times 1 0}^{\mathbf{2 3}} \mathbf{p h o t o n s}}\right)=8.44 \times 10^{-19} \mathrm{~J} / \text { photon } \\
& E=\mathrm{h} \nu=\mathrm{h} \mathrm{c} / \lambda \quad \lambda=\mathrm{hc} / E \quad \lambda=\left(\frac{\left(\mathbf{6 . 6 2 6 \times 1 0} 0^{-34} \mathbf{J} \cdot \mathbf{s}\right)\left(\mathbf{3 . 0 0} \times 10^{8} \frac{\mathbf{m}}{\mathbf{s}}\right)}{\mathbf{8 . 4 4} \times 10^{-19} \mathbf{J}}\right)=\mathbf{2 3 6} \times 10^{-9} \mathbf{m} \\
& \lambda=236 \times 10^{-9} \mathrm{~m}=236 \times 10^{-9} \times 10^{9} \mathrm{~nm}=236 \mathrm{~nm}
\end{aligned}
$$

Development of Current Atomic Theory

- Atomic spectrum can be used as a "fingerprint" for an element and the scientists conclude that if atoms emit only discrete wavelengths, may be atoms can have only discrete energies.
- The discrete amounts of energy are absorbed or released (energy is said to be quantized).
- Atoms absorb and emit electromagnetic radiation as the energies of their electrons change.

In the case of hydrogen atom spectra, the energies that the electron can possess are given by:

$$
E_{n}=-R_{H}\left(1 / n^{2}\right)
$$

where R_{H}, the Rydberg constant, has the value $2.18 \times 10^{-18} \mathrm{~J}$. The number n is the integer called the principal quantum number; it has the values $n=1,2,3,4, \ldots$

$$
E_{i}=-R_{H}\left(1 / n_{i}^{2}\right) \quad E_{f}=-R_{H}\left(1 / n_{f}^{2}\right)
$$

$$
\Delta E=h v=E_{f}-E_{i}=R_{H}\left(1 / n_{i}^{2}-1 / n_{t 2}\right)
$$

Lyman series is due to the transfer of electrons from excited state to $\boldsymbol{n}=\mathbf{1}$ Balmer series is due to the transfer of electrons from excited state to $\boldsymbol{n}=\mathbf{2}$ Paschen series is due to the transfer of electrons from excited state to $n=3$ Brackett series is due to the transfer of electrons from excited state to $\boldsymbol{n}=\mathbf{4}$ Pfund series is due to the transfer of electrons from excited state to $\boldsymbol{n}=5$

What is the wavelength of a photon (in nanometers)

 emitted during a transition from the ni = 5 state to the $\mathrm{nf}=1$ state in the hydrogen atom?Step 1: Calculate ΔE using the following equation:

$$
\begin{aligned}
\Delta E & =h v=E_{f}-E_{i}=R_{H}\left(1 / n_{i}^{2}-1 / n_{f}^{2}\right) \\
& =2.18 \times 10^{-18} \mathrm{~J}\left(1 / 5^{2}-1 / 1^{2}\right) \\
& =-2.09 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

The negative sign (-ve) indicates that this energy associated with an emission process.
Step 2: calculate the wavelength, (omit the -ve sign of ΔE).
$\Delta E=2.09 \times 10^{-18} \mathrm{~J}=h v=h \times c / \lambda$
$\lambda \underset{18}{c} \mathrm{~J}) / \Delta E=\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right) /\left(2.09 \times 10^{-}\right.$
Wavelength $\lambda=9.52 \times 10^{-8} \mathrm{~m}=9.52 \times 10^{-8} \times 10^{9} \mathrm{~nm}=94.2$ nm

Duality of the Electron

- Electron can be described as if it were a

- Since waves are described by their wavelength λ and particles are described by their momentum, \mathbf{p},
- $\mathrm{E}=\mathrm{h} v=\mathrm{hc} / \lambda$ (wave)
- $E=m c^{2}=p c$ (particle)

The DeBroglie relationship:between momentum (a particle property) and wavelength (a wave property)

$$
\begin{gathered}
\mathrm{p}=\mathrm{m} \mathrm{c}=\mathrm{h} / \lambda \text { or } \mathrm{m} \mathrm{~s}=\mathrm{h} / \lambda \\
\mathrm{ms}=\mathbf{h} / \boldsymbol{\lambda}
\end{gathered}
$$

(m is the mass in kg and s is the speed in m / s),

What is the DeBroglie wavelength (in meter) of an

 electron of a mass $9.11 \times 10^{-31} \mathrm{~kg}$ and a speed of $2.2 \times$ $10^{6} \mathrm{~m} / \mathrm{s}$. (Notice that: J.s = kg.m ${ }^{2} . \mathrm{s}^{-1}$)- Using the formula:

$$
\begin{aligned}
& \mathrm{m} \mathrm{~s}=\mathrm{h} / \lambda \text { or } \lambda=\mathrm{h} / \mathrm{m} \mathrm{~s} \\
& \begin{array}{l}
\lambda
\end{array}=\mathrm{h} / \mathrm{ms}=\left(6.63 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} . \mathrm{s}^{-1}\right) /\left(9.11 \times 10^{-31} \times 2.2 \times 10^{6} \mathrm{~m}\right. \\
& \left.\mathrm{s}^{-1}\right) \\
& \\
& =3.3 \times 10^{-10} \mathrm{~m}
\end{aligned}
$$

Calculate the energy (in joules) of a photon with a wavelength of $6.00 \times 10^{4} \mathrm{~nm}$.
Using the following formula:
$\mathrm{E}_{\text {photon }}=\mathrm{h} v \quad$ and $v=\mathrm{c} / \lambda$
Wavelength $(\lambda)=6.00 \times 10^{4} \mathrm{~nm}$

$$
=6.00 \times 10^{4} \times 10^{-9} \mathrm{~m}=6.00 \times 10^{-5} \mathrm{~m},
$$

Speed of light $(\mathrm{c})=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, Planck's constant $(\mathrm{h})=6.63 \times 10^{-34} \mathrm{~J}$.
㬈 $v=0.5 \times 10^{13} \mathrm{~s}^{-1}$ and $E_{\text {photon }}=3.315 \times 10^{-21} \mathrm{~J}$

لمزيد من التمارين و الثرح أحصل على نسختك من كتاب University Chemistry

من مكتبة خوارزم

