

Number of moles

To determine the number of moles use the following formula or triangles:

$$
\text { number of moles }=\frac{\operatorname{mass}(g)}{\operatorname{molar~mass}(g / \text { mole })}
$$

How many moles are there in 22.99 g of sodium?

number of moles $=1 \mathbf{m o l e}$.
How many moles are there in 1 g of chlorine?
number of moles $=\quad \operatorname{mass}(\mathrm{g}) \quad 1 \mathrm{~g}$
$\overline{\text { molar mass }(\mathrm{g} / \mathrm{mole})}=\overline{\mathbf{3 5 . 4 5 g} / \mathrm{mole}(\text { from the periodic table) }}$
number of moles $=0.028$ mole.

Molar mass and the mole
$2=$

- one mole is defined as the number of carbon atoms in exactly 12.000000 grams of pure 12 C .
- From the sugar example, a mole of $\mathrm{C}_{2} \mathrm{H}_{22} \mathrm{O}_{11}$ would have a mass of 342.299 grams.
- This quantity is known as the molar mass, a term that is often used in place of the terms atomic mass or molecular mass.

Determine the molar mass of NaOH ?
NaOH contains one Na atom + one oxygen atom + one hydrogen atom Molar mass $=1 \mathrm{x}$ mass of Na atom +1 x mass of O atom +1 x mass of H atom
The masses of the elements can be obtained from the periodic table

$$
=1 \times 22.99+1 \times 16.00+1 \times 1.008=39.99 \mathrm{~g}
$$

Molar mass of $\mathrm{NaOH}=39.99 \mathrm{~g}$

How many grams are there in 0.10 mole of CH_{4} ?

Then use the formula:
mass of $\mathrm{CH}_{4}=$ number of moles \times molar mass of CH_{4}

$$
=0.10 \text { mole } \times 16.02 \mathrm{~g} / \mathrm{mole}=1.602 \mathrm{~g}
$$

Which one is the lightest in mass: one mole of hydrogen, one mole of sodium, one mole of iron, one mole of sulfur?

One mole for an element contains the atomic mass of the element. Atomic mass of $\mathrm{H}=1.008 \mathrm{~g} / \mathrm{mole}$, Atomic mass of $\mathrm{Na}=22.99 \mathrm{~g} / \mathrm{mole}$, Atomic mass of $\mathrm{Fe}=55.85 \mathrm{~g} /$ mole, Atomic mass of $\mathrm{S}=32.07 \mathrm{~g} / \mathrm{mole}$.

The lightest one is one mole of hydrogen The heaviest one mole is the iron.

Chemical Reactions

It is process in which one or more pure substances are converted into one or more different pure substance.
All chemical reactions involve a change in substances and a change in energy.
Neither matter nor energy is created or destroyed in a chemical reaction, only changed.

Chemical equation

- When a chemical reaction occurs, it can be described by an equation.
- This shows the chemicals that react (reactants) on the left-hand side, and the chemicals that they produce (products) on the righthand side.

$$
\text { Reactants } \xrightarrow{\text { Reaction conditions }} \text { Products }
$$

Reaction between hydrogen gas and oxygen gas to produce liquid water

hydrogen gas + oxygen gas	
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)$	\longrightarrow liquid water

Balancing chemical equations
first write the correct formula for both reactants and products
and then balance all of the atoms on the left side of the
reaction with the atoms on the right side.
Write the chemical equation which represents the burning of glucose
in presence of oxygen gas which produces carbon dioxide and water.
2. Try to figure out the correct formula for the reactants and products,
Glucose is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, oxygen gas is O_{2}, carbon dioxide is CO_{2}, and water is $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}$
$\rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
3.Count the number of each atom at both sides of the equation:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$(6 \mathrm{C}+12 \mathrm{H}+6 \mathrm{O})+(2 \mathrm{O}) \longrightarrow(1 \mathrm{C}+2 \mathrm{O})+(2 \mathrm{H}+1 \mathrm{O})$
Total: $(6 \mathrm{C}+12 \mathrm{H}+8 \mathrm{O}) \longrightarrow(1 \mathrm{C}+2 \mathrm{H}+3 \mathrm{O})$

```
5
```



```
Balance C first, then \(H\), and finally \(O\) :
At the left side there are 6 C atoms and at the right side there are 1 C atom, so multiply \(\mathrm{CO}_{2}\) by 6 (x 6)
\[
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\]
```

At the left side there are 12 H atoms and at the right side there are 2 H atom, so multiply $\mathrm{H}_{2} \mathrm{O}$ by 6 (x 6)

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

At the left side there are 8 O atoms and at the right side there are 18 O atom, so multiply O_{2} by 6 (x 6)

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Recount all atoms again,
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

	$(6 \mathrm{C}+12 \mathrm{H}+6 \mathrm{O})+(12 \mathrm{O})$	$(6 \mathrm{C}+12 \mathrm{O})+(12 \mathrm{H}+6 \mathrm{O})$
Total: $(6 \mathrm{C}+12 \mathrm{H}+18 \mathrm{O})$	$(6 \mathrm{C}+12 \mathrm{H}+18 \mathrm{O})$	10

$$
(6 \mathrm{C}+12 \mathrm{H}+18 \mathrm{O})
$$

Amount of reactants and products problems

aA \qquad bB

In this type of problems, you are given the mass (\#moles) of the reactant and you calculate the mass (\#moles) of the product.
You can use the following formula to calculate the \#moles of B:
number of moles of $(B)=$ number of moles of $(A) \times\left(\frac{b}{a}\right)$
You can use the following formula to calculate the mass of B :

$$
\operatorname{massof}(B)=\left(\frac{\operatorname{massof}(A)}{\operatorname{Molar} \operatorname{massof}(A)}\right) \times\left(\frac{b}{a}\right) \times \operatorname{Molar} \operatorname{massof}(B)
$$

How many grams of water are produced when 7.00 grams of oxygen react with an excess of hydrogen according to the reaction shown below?

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-\cdots-\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

\checkmark The "excess" reactant has nothing to do with the problem. \checkmark Identify which is the "given" and which is the unknown.

10 g

- Use the formula:

$$
\begin{gathered}
\text { mass of }\left(\mathrm{H}_{2} \mathrm{O}\right)=\left(\frac{\text { mass of } \mathrm{O}_{2}}{\text { Molar mass of } \mathrm{O}_{2}}\right) \times\left(\frac{2\left(\mathrm{H}_{2} \mathrm{O}\right)}{1\left(\mathrm{O}_{2}\right)}\right) \times \text { Molar mass of }\left(\mathrm{H}_{2} \mathrm{O}\right) \\
\text { mass of }\left(\mathrm{H}_{2} \mathrm{O}\right)=\left(\frac{7.0 \mathrm{~g}}{32 \mathrm{~g} / \text { mole }}\right) \times\left(\frac{2\left(\mathrm{H}_{2} \mathrm{O}\right)}{1\left(\mathrm{O}_{2}\right)}\right) \times 18 \mathrm{~g} / \text { mole }
\end{gathered}
$$

Mass of $\mathrm{H}_{2} \mathrm{O}=7.89 \mathrm{~g}$

Calculate the number of moles of CO_{2} resulted from the reaction of 3.5 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ with excess oxygen according to the equation

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

- Use the formula:

$$
\begin{aligned}
& \text { number of moles of }\left(\mathrm{CO}_{2}\right)=\text { number of moles of }\left(\mathrm{C}_{2} \mathrm{H}_{6}\right) \times\left(\frac{4\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)}{2\left(\mathrm{CO}_{2}\right)}\right) \\
& \text { number of moles of }\left(\mathrm{CO}_{2}\right)=3.5 \text { moles of }\left(\mathrm{C}_{2} \mathrm{H}_{6}\right) \times\left(\frac{4\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)}{2\left(\mathrm{CO}_{2}\right)}\right)
\end{aligned}
$$

Number of moles of $\mathrm{CO}_{2}=7.0$ moles
4

