Amount of reactants and products problems

aA \qquad
In this type of problems, you are given the mass (\#moles) of the reactant and you calculate the mass (\#moles) of the product.
You can use the following formula to calculate the \#moles of B:

$$
\text { number of moles of }(B)=\text { number of moles of }(A) x\left(\frac{b}{a}\right)
$$

You can use the following formula to calculate the mass of B :

$$
\operatorname{massof}(B)=\left(\frac{\operatorname{massof}(A)}{\operatorname{Molar} \operatorname{massof}(A)}\right) \times\left(\frac{b}{a}\right) \times \text { Molar massof }(B)
$$

How many grams of water are produced when 7.00 grams of oxygen react with an excess of hydrogen according to the reaction shown below?

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \cdots 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

\checkmark The "excess" reactant has nothing to do with the problem. \checkmark Identify which is the "given" and which is the unknown.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \cdots+-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Limiting Reagents

$$
a A+b B
$$

\qquad dD
When two substances A and B are present in random quantities and react with each other to produce D, the first consumed one is the limiting reagent and the second one is remained in excess.

To determine the limiting reagent from given moles of substance, do the followings:
1- Calculate the ratio for each reagent, by dividing the given moles of a reagent to its factor in the chemical equation.

2- Compare the ratios for the reagents and the limiting reagent is the smallest one.

1

If 5 moles of NO were mixed with 5 moles of O_{2} to
react as: $\quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})$
Determine the limiting reagent.

```
The ratio of \(\mathrm{NO}=\frac{5 \mathrm{~mol}(\text { given })}{2 \mathrm{~mol}(\text { factor })}=2.5\)
The ratio of \(\quad \mathrm{O}_{2}=\frac{5 \mathrm{~mol}}{1 \mathrm{~mol}}=5\)
```

The limiting reactant is NO because it is the smallest
If 400 g Fe were mixed with $300 \mathrm{~g} \mathrm{O}_{2}$ to react as:

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

Determine the limiting reagent.
Step 1: Change the mass in gramsinto moles for the given substances

$$
400 \mathrm{~g} \mathrm{Fe} \times \frac{1 \mathrm{molFe}}{55.8 \mathrm{~g} / \mathrm{moleFe}}=7.17 \mathrm{molFe} 300 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mole}_{2}}{32 \mathrm{~g} / \mathrm{moleO}_{2}}=9.38 \mathrm{~mol} \mathrm{O}_{2}
$$

Step2: Calçulate the ratio and compare

Chemical reaction yield

- For any chemical reaction there are theoretical and actual (practical) yield.
- Theoretical yield (T.Y.) is the amount of product that would result if all the limiting reactant reacted.
- Actual yield (A.Y.) is the amount of product actually obtained from a reaction.
- Due to many factors can affected on the reaction, A.Y. is always less than T.Y.
- Percent yield is the efficient for a given reaction:
$\%$ yield $=\frac{\text { A.Y. }}{\text { T.Y. }} \times 100 \quad 4$

Many tons of urea $\left(\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right)$ are produced every year in fertilizerninestam industries. When 119 g ammonia react with 80 g CO 2 as the equation: $2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}$
and produce 100 g urea, calculate $\%$ yield?

- Step 1: Determine the limiting reagent
- Change the mass in grams into moles for the given substances

$$
119 \mathrm{~g} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mole} \mathrm{NH}_{3}}{17 \mathrm{~g} \mathrm{NH}_{3}}=7 \mathrm{~mol} \mathrm{NH}_{3} \quad 80 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{moleCO}_{2}}{44 \mathrm{~g} \mathrm{CO}_{2}}=1.82 \mathrm{~mol} \mathrm{CO}_{2}
$$

- Calculate the ratio and compare
$\mathrm{NH}_{3}=\frac{7 \mathrm{~mol}}{2 \mathrm{~mol}}=3.5 \quad \mathrm{CO}_{2}=\frac{1.82 \mathrm{~mol}}{1 \mathrm{~mol}}=1.82 \quad \mathrm{CO}_{2}$ is the limiting reagent
Now, ignore NH_{3} and compare between CO_{2} and $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$ only.
- Step 2: Calculate the Theoretical Yield [\#moles of $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$]
number of moles of $(B)=$ number of moles of $(A) x\left(\frac{b}{a}\right)$
$\#$ moles $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}=\#$ moles ofCO $\mathrm{C}_{2} \times\left(\frac{1}{1}\right)=1.82 \mathrm{molesCO}_{2} \times 1$
Number of moles of $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}=1.82$ moles
萌
 is said to be aqueous (aq).

Concentration of solution can be expressed in different wavs:

$$
\frac{\text { Molanity }(\mathrm{M})=\frac{\text { moles of solute }}{\text { volume of solution (liter) }}}{\text { Weight } \%=\frac{\text { weight of solute }}{\text { weight of solutign }} \times 100}
$$

Solutions and concentration

A solution is a homogeneous mixture of 2 or more substances (gas, liquid, or solid) in a single phase and it contains a solute (the substance that is dissolved in a solvent) and a solvent (a liquid in which a substance is ${ }_{\text {m }}$ = dissolved).
When the solvent is water, the solution

Calculate the mass required to prepare a 250 mL 0.01 M solution of KMnO_{4} ?

Convert 250 ml to $\mathrm{L}(250 / 1000=0.250 \mathrm{~L})$
Using the formula:
\# moles = molarity x volum $=\quad$ molarity \quad x \quad volume
$=0.01 \mathrm{~mol} / \mathrm{L} \quad x \quad 0.250 \mathrm{~L}$ $=0.0025 \mathrm{~mol}$
Mass = \# moles x molar mass
Molar mass of KMnO4 = $158.0 \mathrm{~g} / \mathrm{mole}$
Mass of KMnO_{4} needed $=0.0025 \mathrm{~mol} \times 158.0 \mathrm{~g} / \mathrm{mole}$
$=0.395 \mathrm{~g}$ of KMnO_{4}
So, weigh 0.395 g of KMnO_{4} and dissolve them in 250 ml volumetric flask.

If a solution contains 0.035 moles solute in 2.0 L of water, what is the molarity?

1

Molarity $(M)=$ moles of solute $/$ volume of solution (liter)

$$
=0.035 \text { moles } / 2.0 \mathrm{~L}=1.8 \times 10^{-2} \mathrm{M}
$$

Step 3: Calculate the Theoretical Yield [mass of $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$] produces:
The T.Y. $=1.82$ mole urea $\times \frac{60 \mathrm{~g} \text { urea }}{1 \text { mole urea }}=109 \mathrm{~g}$ urea

Step 4: Calculate the \%Yield of $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$:

$$
\% \text { yield }=\frac{\text { A.Y. }}{\text { T.Y. }} \times 100
$$

$$
\% \text { yield }=\frac{100}{109} \times 100=91.7 \%
$$

n

Dilution of concentrated solutions

E

- When we dilute a solution by mixing it with more solvent, the amount of solute present does not change, but the total volume and the concentration of the solution do change.
- To calculate the molarity after dilution, we can use the following formula:


```
(Molarity x Volume)}\mp@subsup{)}{\mathrm{ before dilution }}{=(Molarity x Volume) after dilutio
M1 }\times\mp@subsup{V}{1}{}=\mp@subsup{M}{2}{}\times\mp@subsup{V}{2}{
```

How many milliliters of $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are required to prepare 1.00 L of a 0.900 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
Using the formula: $\mathrm{M}_{1} \times \mathrm{V}_{1}=\mathrm{M}_{2} \times V^{2}$
$\mathrm{M}_{1}=18.0 \mathrm{M}, \mathrm{V}_{1}=$?? And $\mathrm{M}_{2}=0.900 \mathrm{M}, \mathrm{V}_{2}=1.00 \mathrm{~L}$
So, $\quad V_{1}=\frac{\mathrm{M}_{2} \times \mathrm{V}_{2}}{\mathrm{M}_{1}}=\frac{0.900 \mathrm{M} \times 1.00 \mathrm{~L}}{18.0 \mathrm{M}}=0.0500 \mathrm{~L}=50.0 \mathrm{~mL}$

According to the reaction
$\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HNO}_{3}$
$\mathrm{Ba}(\mathrm{OH})_{2(a q)}+2 \mathrm{HNO}_{3}$ (aq) \rightarrow
What volume of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ is required to react with 41.77 mL of
$0.1603 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$? $0.1603 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?

From the chemical equation:
$\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
2 Moles of HNO_{3} react with one mole of $\mathrm{Ba}(\mathrm{OH})_{2}$
\# moles of $\mathrm{Ba}(\mathrm{OH})_{2}=$ molarity X volume of solution

$$
=0.1603 \mathrm{M} \mathrm{X}(41.77 / 1000) \mathrm{L}=6.696 \times 10^{-3} \mathrm{~mol}
$$

The moles of HNO_{3} which reacted $=2 \times 6.696 \times 10^{-3}=13.39 \times 10^{-3} \mathrm{~mol}$
\# moles of $\mathrm{HNO}_{3}=$ molarity X volume of solution
$13.39 \times 10^{-3} \mathrm{~mol}=0.5 \mathrm{MXV}$

$$
\mathrm{V}=0.0417 \mathrm{~L}=41.7 \mathrm{~mL}
$$

