Amount of reactants and products problems	chemistry d A. Salam
aA ───→ bB	
In this type of problems, you are given the mass (#moles) of the reactant and yo calculate the mass (#moles) of the product.	u
You can use the following formula to calculate the #moles of B:	
number of moles of (B) = number of moles of (A)x $\left(\frac{b}{a}\right)$	
You can use the following formula to calculate the mass of B:	
$mass of (B) = \left(\frac{mass of (A)}{Molar mass of (A)}\right) x \left(\frac{b}{a}\right) x Molar mass of (B)$	
How many grams of water are produced when 7.00 grams of oxygen reac with an excess of hydrogen according to the reaction shown below? $2H_2(g) + O_2(g)> 2H_2O(g)$	t
✓The "excess" reactant has nothing to do with the problem. ✓Identify which is the "given" and which is the unknown.	
$2H_2(g) + O_2(g)> 2H_2O(g)$ 1 10 g ?	

Limiting Reagents	University Chemistry Dr. Mohamed A. Salam
aA+ bB ——→ dD	
When two substances A and B are present in random quantitie react with each other to produce D, the <u>first consumed</u> one <i>limiting reagent</i> and the <u>second one</u> is remained in <i>excess</i> .	es and is <i>the</i>
The amount of product should be calculated from the amount of the finiting reactant	Ð
To determine the limiting reagent from given mole substance, do the followings: 1- Calculate the ratio for each reagent, by dividing the moles of a reagent to its factor in the chemical equation.	es of given
 Compare the ratios for the reagents and the lin reagent is the smallest one. 	niting 2

Step 3: Calculate the Theoretical Yield [mass of CO(NH₂)₂]
produces:
The T.Y. =1.82 mole urea×
$$\frac{60g \text{ urea}}{\text{Imole urea}}$$
=109g urea
Step 4: Calculate the %Yield of CO(NH₂)₂:
% yield = $\frac{A.Y.}{T.Y.}$ ×100
% yield = $\frac{100}{109}$ ×100=91.7%

Inass of reactant molar Indes of reactant chemical chemical Indes of product Indes of product Indes of product Indes of product Of Indes of reactant equation Indes of product Of product Of of product Volume or solution (of reactant) Indes of reactant Indes of product Indes of product	University Chemistry Dr. Mohamed A. Salam
What volume of 1.5 M HCl is required to react with 34.6 mL of 2.44 NaOH?	м
$NaOH_{(aq)} + HCI_{(ag)} \rightarrow NaCI_{(aq)} + H2O_{(l)}$	
First calculate the number of moles of NaOH:	
2.44 M X (34.6/1000)L = 0.0844 mole NaOH	
From the chemical equation:	
$NaOH_{(aq)} + HCI_{(ag)} \rightarrow NaCI_{(aq)} + H2O_{(l)}$	
One mole of HCI reacts with one mole of NaOH	
0.0844 mole HCI reacts with 0.0844 mole NaOH	
Number of moles of HCI = molarity of HCI X volume of solution	
0.0844moles HCI = 1.5 M X V	
The volume of HCI= $0.056 L = 56 mL$	
	11

