A monoclinic modification of 2-[(1,3-benzothiazol-2-yl)iminomethyl]phenol

Abdullah M. Asiri, a Salman A. Khan, a Kong Wai Tan b and Seik Weng Ng b*

a Chemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and b Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 16 June 2010; accepted 19 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean /C27(C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 15.8.

In the title Schiff base, C14H10N2OS, the azomethine double bond is in an E configuration; the benzothiazolyl ring (r.m.s. deviation = 0.007 Å) is coplanar with the phenylene ring (r.m.s. deviation = 0.007 Å), the two rings being slightly bent at 2.6 (1)°. The hydroxy H atom forms an intramolecular hydrogen bond to the imino group. The bond dimensions of the monoclinic modification are similar to those of the orthorhombic modification [Liu et al. (2009). Acta Cryst. E65, o738].

Related literature

Experimental

Crystal data

C14H10N2OS M r = 254.30

Table 1

Hydrogen-bond geometry (Å, °).

D—H—A D—H H—A D—A D—H—A

O1—H1i···N1 0.87 1.73 2.55 (2) 156

Data collection

Bruker SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
T min = 0.964, T max = 0.979
5307 measured reflections
2599 independent reflections
2512 reflections with I > 2σ(I)
R int = 0.029

Reefinement

R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.110
S = 1.05
2599 reflections
164 parameters
2 restraints
H-atom parameters constrained
Δρ max = 0.40 e Å 3
Δρ min = −0.25 e Å 3
Absolute structure: Flack (1983), 1242 Friedel pairs
Flack parameter: 0.27 (8)

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2043).

References