
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 30

Lecture Handout

Computer Architecture

Lecture No. 2

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3
Computer Systems Design and Architecture 2.1, 2.2, 3.2

Summary
1) A taxonomy of computers and their instructions
2) Instruction set features
3) Addressing modes
4) RISC and CISC architectures

Foundations Of Computer Architecture
TAXONOMY OF COMPUTERS AND THEIR INSTRUCTIONS
Processors can be classified on the basis of their instruction set architectures. The
instruction set architecture, described in the previous module gives us a ‘programmer’s
view’ of the machine. This module discussed a number of topics related to the
classifications of computers and their instructions.
CLASSES OF INSTRUCTION SET ARCHITECTURE:
The mechanism used by the CPU to store instructions and data can be used to classify the
ISA (Instruction Set Architecture). There are three types of machines based on this
classification.

• Accumulator based machines
• Stack based machines
• General purpose register (GPR) machines

ACCUMULATOR BASED MACHINES
Accumulator based machines use special registers called the accumulators to hold one
source operand and also the result of the arithmetic or logic operations performed. Thus
the accumulator registers collect (or ‘accumulate’) data. Since the accumulator holds one
of the operands, one more register may be required to hold the address of another
operand. The accumulator is not used to hold an address. So accumulator based machines
are also called 1-address machines. Accumulator machines employ a very small number

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 31

of accumulator registers, generally only one. These machines were useful at the time
when memory was quite expensive; as they used one register to hold the source operand

as well as the result of the operation. However, now that the memory is relatively
inexpensive, these are not considered very useful, and their use is severely limited for the
computation of expressions with many operands.
STACK BASED MACHINES
A stack is a group of registers organized as a last-in-first-out (LIFO) structure. In such a
structure, the operands stored first, through the push operation, can only be accessed last,
through a pop operation; the order of access to the operands is reverse of the storage
operation. An analogy of the stack is a “plate-dispenser” found in several self-service
cafeterias. Arithmetic and logic operations successively pick operands from the top-of-
the-stack (TOS), and push the results on the TOS at the end of the operation. In stack
based machines, operand addresses need not be specified during the arithmetic or logical
operations. Therefore, these machines are also called 0-address machines.
GENERAL-PURPOSE-REGISTER MACHINES
In general purpose register machines, a number of registers are available within the CPU.
These registers do not have dedicated functions, and can be employed for a variety of
purposes. To identify the register within an instruction, a small number of bits are
required in an instruction word. For example, to identify one of the 64 registers of the
CPU, a 6-bit field is required in the instruction.
CPU registers are faster than cache memory. Registers are also easily and more
effectively used by the compiler compared to other forms of internal storage. Registers
can also be used to hold variables, thereby reducing memory traffic. This increases the
execution speed and reduces code size (fewer bits required to code register names
compared to memory) .In addition to data, registers can also hold addresses and pointers
(i.e., the address of an address). This increases the flexibility available to the
programmer.
A number of dedicated, or special purpose registers are also available in general-purpose
machines, but many of them are not available to the programmer. Examples of
transparent registers include the stack pointer, the program counter, memory address
register, memory data register and condition codes (or flags) register, etc.
We should understand that in reality, most machines are a combination of these machine
types. Accumulator machines have the advantage of being more efficient as these can
store intermediate results of an operation within the CPU.
INSTRUCTION SET
An instruction set is a collection of all possible machine language commands that are
understood and can be executed by a processor.
ESSENTIAL ELEMENTS OF COMPUTER INSTRUCTIONS:
There are four essential elements of an instruction; the type of operation to be performed,
the place to find the source operand(s), the place to store the result(s) and the source of
the next instruction to be executed by the processor.
Type of operation
In module 1, we described three ways to list the instruction set of a machine; one way of
enlisting the instruction set is by grouping the instructions in accordance with the
functions they perform. The type of operation that is to be performed can be encoded in

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 32

the op-code (or the operation code) field of the machine language instruction. Examples
of operations are mov, jmp, add; these are the assembly mnemonics, and should not be

confused with op-codes. Op-codes are simply bit-patterns in the machine language format
of an instruction.
Place to find source operands
An instruction needs to specify the place from where the source operands will be
retrieved and used. Possible locations of the source operands are CPU registers, memory
cells and I/O locations. The source operands can also be part of an instruction itself; such
operands are called immediate operands.
Place to store the results
An instruction also specifies the location in which the result of the operation, specified by
the instruction, is to be stored. Possible locations are CPU registers, memory cells and
I/O locations.
Source of the next instruction
By default, in a program the next instruction in sequence is executed. So in cases where
the next-in-sequence instruction execution is desired, the place of next instruction need
not be encoded within the instruction, as it is implicit. However, in case of a branch, this
information needs to be encoded in the instruction. A branch may be conditional or
unconditional, a subroutine call, as well as a call to an interrupt service routine.
Example
The table provides examples of assembly language commands and their machine
language equivalents. In the instruction
add cx, dx, the contents of the location
dx are added to the contents of the
location cx, and the result is stored in
cx. The instruction type is arithmetic,
and the op-code for the add instruction
is 0000, as shown in this example.
CLASSIFICATIONS OF
INSTRUCTIONS:
We can classify instructions according to the format shown below.

• 4-address instructions
• 3-address instructions
• 2-address instructions
• 1-address instructions
• 0-address instructions

The distinction is based on the fact that some operands are accessed from memory, and
therefore require a memory address, while others may be in the registers within the CPU
or they are specified implicitly.

4-address instructions
The four address instructions specify the addresses of two source operands, the address of
the destination operand and the next instruction address.
4-address
instructions are not
very common
because the next

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 33

instruction to be executed is sequentially stored next to the current instruction in the

memory. Therefore, specifying its address is redundant. These instructions are used in
the micro-coded control unit, which will be studied later.

3-address instruction
A 3-address instruction
specifies the addresses of two
operands and the address of the
destination operand.

2-address instruction
A 2-address instruction has three fields; one for the op-code, the second field specifies
the address of one of the source operands as
well as the destination operand, and the last
field is used for holding the address of the
second source operand. So one of the fields serves two purposes; specifying a source
operand address and a destination operand address.

1-address instruction
A 1-address instruction has a dedicated CPU register,

called the accumulator, to hold one operand and to store

the result. There is no need of encoding the address of the accumulator register to access

the operand or to store the result, as its usage is implicit. There are two fields in the

instruction, one for specifying a source operand address and a destination operand

address.

0-address instruction
A 0-address instruction uses a stack to hold both the operands and the
result. Operations are performed on the operands stored on the top of the
stack and the second value on the stack. The result is stored on the top of
the stack. Just like the use of an accumulator register, the addresses of
the stack registers need not be specified, their usage is implicit. Therefore, only one field
is required in 0-address instruction; it specifies the op-code.
COMPARISON OF INSTRUCTION FORMATS:
Basis for comparison
Two parameters are used as the basis for comparison of the instruction sets discussed
above. These are

• Code size
Code size has an effect on the storage requirements for the instructions; the
greater the code size, the larger the memory required.

• Number of memory accesses

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 34

The number of memory accesses has an effect on the execution time of
instructions; the greater the number of memory accesses, the larger the time
required for the execution cycle, as memory accesses are generally slow.

Assumptions
We make a few assumptions, which are

• A single byte is used for the op code, so 256 instructions can be encoded using
these 8 bits, as 28 = 256

• The size of the memory address space is 16 Mbytes
• A single addressable memory unit is a byte

• Size of operands is 24 bits. As the memory size is 16Mbytes, with byte-

addressable memory, 24 bits are required to encode the address of the operands.
• The size of the address bus is 24 bits
• Data bus size is 8 bits

Discussion4-address instruction
• The code size

is 13 bytes
(1+3+3+3+3
= 13 bytes)

• Number of
bytes
accessed from memory is 22 (13 bytes for instruction fetch + 6 bytes for source
operand fetch + 3 bytes for storing destination operand = 22 bytes)

Note that there is no need for an additional memory access for the operand corresponding
to the next instruction, as it has already been brought into the CPU during instruction
fetch.
3-address instruction

• The code size is 10 bytes
(1+3+3+3 = 10 bytes)

• Number of bytes accessed
from memory is 22

(10 bytes for instruction fetch
+ 6 bytes for source operand fetch + 3 bytes for storing destination operand = 19
bytes)

2-address instruction
• The code size is 7 bytes (1+3+3 = 7

bytes)
• Number of bytes accessed from

memory is 16(7 bytes for instruction
fetch + 6 bytes for source operand
fetch + 3 bytes for storing destination operand = 16
bytes)

1-address instruction
• The code size is 4 bytes (1+3= 4 bytes)
• Number of bytes accessed from memory is 7
(4 bytes for instruction fetch + 3 bytes for source
operand fetch + 0 bytes for storing destination operand = 7 bytes)

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 35

0-address instruction
• The code size is 1 byte
• Number of bytes accessed from memory is 10
(1 byte for instruction fetch + 6 bytes for source operand fetch + 3
bytes for storing destination operand = 10 bytes)

The following table summarizes this information

HALF ADDRESSES
In the preceding discussion we have
talked about memory addresses. This
discussion also applies to CPU
registers. However, to specify/ encode
a CPU register, less number of bits is
required as compared to the memory addresses. Therefore, these addresses are also called
“half-addresses”. An instruction that specifies one memory address and one CPU register
can be called as a 1½-address instruction
 Example
 mov al, [34h]
THE PRACTICAL SITUATION
Real machines are not as simple as the classifications presented above. In fact, these
machines have a mixture of 3, 2, 1, 0, and 1½-address instructions. For example, the
VAX 11 includes instructions from all classes.
CLASSIFICATION OF MACHINES ON THE BASIS OF OPERAND
AND RESULT LOCATION:
A distinction between machines can be made on the basis of the ALU instructions;
whether these instructions use data from the memory or not. If the ALU instructions use
only the CPU registers for the operands and result, the machine type is called “load-
store”. Other machines may have a mixture of register-memory, or memory-memory
instructions.
The number of memory operands supported by a typical ALU instruction may vary from
0 to 3.
Example
The SPARC, MIPS, Power PC, ALPHA: 0 memory addresses, max operands allowed = 3
X86, 68x series: 1 memory address, max operands allowed = 2
LOAD- STORE MACHINES
These machines are also called the register-to-register machines. They typically use the
1½ address instruction format. Only the load and store instructions can access the
memory. The load instruction fetches the required data from the memory and temporarily
stores it in the CPU registers. Other instructions may use this data from the CPU
registers. Then later, the results can be stored back into the memory by the store
instruction. Most RISC computers fall under this category of machines.
Advantages (of register-register instructions)
Register-register instructions use 0 memory operands out of a total of 3 operands. The
advantages of such a scheme is:

• The instructions are simple and fixed in length

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 36

• The corresponding code generation model is simple
• All instructions take similar number of clock cycles for execution

Disadvantages (register-register instructions)
• The instruction count is higher; the number of instructions required to complete a

particular task is more as separate instructions will be required for load and store
operations of the memory

• Since the instruction size is fixed, the instructions that do not require all fields

waste memory bits
Register-memory machines
In register-memory machines, some operands are in the memory and some are in
registers. These machines typically employ 1 or 1½ address instruction format, in which
one of the operands is an accumulator or a general-purpose CPU registers.
Advantages
Register-memory operations use one memory operand out of a total of two operands. The
advantages of this instruction format are

• Operands in the memory can be accessed without having to load these first
through a separate load instruction

• Encoding is easy due to the elimination of the need of loading operands into
registers first

• Instruction bit usage is relatively better, as more instructions are provided per
fixed number of bits

Disadvantages
• Operands are not equivalent since one operand may have two functions (both

source operand and destination operand), and the source operand may be
destroyed

• Different size encoding for memory and registers may restrict the number of
registers

• The number of clock cycles per instruction execution vary, depending on the
operand location operand fetch from memory is slow as compared to operands in
CPU registers

Memory-Memory Machines
In memory-memory machines, all three of the operands (2 source operands and a
destination operand) are in the memory. If one of the operands is being used both as a
source and a destination, then the 2-address format is used. Otherwise, memory-memory
machines use 3-address formats of instructions.
Advantages

• The memory-memory instructions are the most compact instruction where
encoding wastage is minimal.

• As operands are fetched from and stored in the memory directly, no CPU registers
are wasted for temporary storage

Disadvantages
• The instruction size is not fixed; the large variation in instruction sizes makes

decoding complex
• The cycles per instruction execution also vary from instruction to instruction

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 37

• Memory accesses are generally
slow, so too many references
cause performance degradation

Example 1
The expression a = (b+c)*d – e is
evaluated with the 3, 2, 1, and 0-
address machines to provide a

comparison of their advantages and disadvantages discussed above. The instructions
shown in the table are the minimal instructions required to evaluate the given expression.
Note that these are not machine language instructions, rather the pseudo-code.
Example 2
The instruction z = 4(a +b) – 16(c+58) is with the 3, 2, 1, and 0-address machines in the
table.
Functional classification of
instruction sets:
Instructions can be classified into the
following four categories based on
their functionality.

• Data processing
• Data storage (main memory)
• Data movement (I/O)
• Program flow control

These are discussed in detail
• Data processing

Data processing instructions are the ones that perform some mathematical or logical
operation on some operands. The Arithmetic Logic Unit performs these operations,
therefore the data processing instructions can also be called ALU instructions.

• Data storage (main memory)
The primary storage for the operands is the main memory. When an operation needs to be
performed on these operands, these can be temporarily brought into the CPU registers,
and after completion, these can be stored back to the memory. The instructions for data
access and storage between the memory and the CPU can be categorized as the data
storage instructions.

• Data movement (I/O)
The ultimate sources of the data are input devices e.g. keyboard. The destination of the
data is an output device, for example, a monitor, etc. The instructions that enable such
operations are called data movement instructions.

• Program flow control
A CPU executes instructions sequentially, unless a program flow-change instruction is
encountered. This flow change, also called a branch, may be conditional or unconditional.
In case of a conditional branch, if the branch condition is met, the target address is loaded
into the program counter.
ADDRESSING MODES:
Addressing modes are the different ways in which the CPU generates the address of
operands. In other words, they provide access paths to memory locations and CPU
registers.
Effective address

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 38

An “effective address” is the address (binary bit pattern) issued by the CPU to the
memory. The CPU may use various ways to compute the effective address. The memory
may interpret the effective address differently under different situations.
COMMONLY USED ADDRESSING MODES
Some commonly used addressing modes are explained below.

Immediate addressing mode
In this addressing mode, data is the part of the instruction itself, and so there is no need of
address calculation. However, immediate addressing mode is used to hold source
operands only; cannot be used for storing results. The range of the operands is limited by
the number of bits available for encoding the operands in the instruction; for n bit fields,
the range is -2(n-1) to +(2(n-1)-1).
Example: lda 123
In this example, the immediate
operand, 123, is loaded onto the
accumulator. No address calculation is
required.
Direct Addressing Mode
The address of the operand is specified
as a constant, and this constant is
coded as part of the instruction. The address space that can be accessed is limited address
space by the operand field size (2operand field size locations).
Example: lda [123]
As shown in the figure, the address of
the operand is stored in the instruction.
The operand is then fetched from that
memory address.
Indirect Addressing Mode
The address of the location where the
address of the data is to be found is
stored in the instruction as the operand.
Thus, the operand is the address of a memory location, which holds the address of the
operand. Indirect addressing mode can access a large address space (2memory word size
locations). To fetch the operand in this addressing mode, two memory accesses are
required. Since memory accesses are slow, this is not efficient for frequent memory
accesses. The indirect addressing mode
may be used to implement pointers.
Example: lda [[123]]
As shown in the figure, the address of
the memory location that holds the
address of the data in the memory is
part of the instruction.

Register (Direct) Addressing Mode
The operand is contained in a CPU register, and the address of this register is encoded in
the instruction. As no memory access is needed, operand fetch is efficient. However,
there are only a limited number of CPU registers available, and this imposes a limitation
on the use of this addressing mode.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 39

Example: lda R2
This load instruction specifies the address of the register and the operand is fetched from
this register. As is clear from the diagram, no memory access is involved in this
addressing mode.

REGISTER INDIRECT
ADDRESSING MODE
In the register indirect mode, the
address of memory location that
contains the operand is in a CPU
register. The address of this CPU
register is encoded in the instruction. A
large address space can be accessed
using this addressing mode (2register size
locations). It involves fewer memory
accesses compared to indirect addressing.
Example: lda [R1]
The address of the register that
contains the address of memory
location holding the operand is
encoded in the instruction. There is
one memory access involved.
Displacement addressing mode
The displacement-addressing mode is
also called based or indexed
addressing mode. Effective memory address is calculated by adding a constant (which is
usually a part of the instruction) to the value in a CPU register. This addressing mode is
useful for accessing arrays. The addressing mode may be called ‘indexed’ in the situation
when the constant refers to the first element of the array (base) and the register contains
the ‘index’. Similarly, ‘based’ refers to the situation when the constant refers to the offset
(displacement) of an array element with respect to the first element. The address of the
first element is stored in a register.
Example: lda [R1 + 8]
In this example, R1 is the address of
the register that holds a memory
address, which is to be used to
calculate the effective address of the
operand. The constant (8) is added to
this address held by the register and
this effective address is used to
retrieve the operand.
Relative addressing mode
The relative addressing mode is similar to the indexed addressing mode with the
exception that the PC holds the base address. This allows the storage of memory
operands at a fixed offset from the
current instruction and is useful for
‘short’ jumps.
Example: jump 4

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 40

The constant offset (4) is a part of the instruction, and it is added to the address held by
the Program Counter.

RISC and CISC architectures:
Generally, computers can be classified as being RISC machines or CISC machines. These
concepts are explained in the following discussion.
RISC (Reduced instruction set computers)
RISC is more of a philosophy of computer design than a set of architectural features. The
underlying idea is to reduce the number and complexity of instructions. However, new
RISC machines have some instructions that may be quite complex and the number of
instructions may also be large. The common features of RISC machines are

• One instruction per clock period
This is the most important feature of the RISC machines. Since the program execution
depends on throughput and not on individual execution time, this feature is achievable by
using pipelining and other techniques. In such a case, the goal is issuing an average of
one instruction per cycle without increasing the cycle time.

• Fixed size instructions
Generally, the size of the instructions is 32 bits.

• CPU accesses memory only for Load and Store operations
This means that all the operands are in the CPU registers at the time these are used in an
instruction. For this purpose, they are first brought into the CPU registers from the
memory and later stored back through the load and store operation respectively.

• Simple and few addressing modes
The disadvantage associated with using complex addressing modes is that complex
decoding is required to calculate these addresses, which reduces the processor
performance as it takes significant time. Therefore, in RISC machines, few simple
addressing modes are used.

• Less work per instruction
As the instructions are simple, less work is done per instruction, and hence the clock
period T can be reduced.

• Improved usage of delay slots
A ‘delay slot’ is the waiting time for a load or store operation to access memory or for a
branch instruction to access the target instruction. RISC designs allow the execution of
the next instruction after these instructions are issued. If the program or compiler places
an instruction in the delay slot that does not depend on the result of the previous
instruction, the delay slot can be used efficiently. For the implementation of this feature,
improved compilers are required that can check the dependencies of instructions before
issuing them to utilize the delay slots.

• Efficient usage of Pre-fetching and Speculative Execution Techniques
Pre-fetching and speculative execution techniques are used with a pipelined architecture.
Instruction pipelining means having multiple instructions in different stages of execution
as instructions are issued before the previous instruction has completed its execution;
pipelining will be studied in detail later. The RISC machines examine the instructions to
check if operand fetches or branch instructions are involved. In such a case, the operands
or the branch target instructions can be ‘pre-fetched’. As instructions are issued before
the preceding instructions have completed execution, the processor will not know in case

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 41

of a conditional branch instruction, whether the condition will be met and the branch will
be taken or not. But instead of waiting for this information to be available, the branch can
be “speculated” as taken or not taken, and the instructions can be issued. Later if the

speculation is found to be wrong, the results can be discarded and actual target
instructions can be issued. These techniques help improve the performance of processors.
CISC (Complex Instruction Set Computers)
The complex instruction set computers does not have an underlying philosophy. The
CISC machines have resulted from the efforts of computer designers to efficiently utilize
memory and minimize execution time, yet add in more instruction formats and
addressing modes. The common attributes of CISC machines are discussed below.

• More work per instruction
This feature was very useful at the time when memory was expensive as well as slow; it
allows the execution of compact programs with more functionality per instruction.

• Wide variety of addressing modes
CISC machines support a number of addressing modes, which helps reduce the program
instruction count. There are 14 addressing modes in MC68000 and 25 in MC68020.

• Variable instruction lengths and execution times per instruction
The instruction size is not fixed and so the execution times vary from instruction to
instruction.
• CISC machines attempt to reduce the “semantic gap”

‘Semantic gap’ is the gap between machine level instruction sets and high-level language
constructs. CISC designers believed that narrowing this gap by providing complicated
instructions and complex-addressing modes would improve performance. The concept
did not work because compiler writes did not find these “improvements” useful. The
following are some of the disadvantages of CISC machines.

• Clock period T, cannot be reduced beyond a certain limit
When more capabilities are added to an instruction the CPU circuits required for the
execution of these instructions become complex. This results in more stages of logic
circuitry and adds propagation delays in signal paths.
This in turn places a limit on the smallest possible value of T and hence, the maximum
value of clock frequency.

• Complex addressing modes delay operand fetch from memory
The operand fetch is delayed because more time is required to decode complex
instructions.

• Difficult to make efficient use of speedup techniques
These speedup techniques include

• Pipelining
• Pre-fetching (Intel 8086 has a 6 byte queue)
• Super scalar operation
• Speculative execution

