
Decentralized Job Scheduler in Desktop Grid

Entisar S. Alkayal
Faculty of Computing and Information Technology

King Abdul Aziz University
Jeddah, Saudi Arabia

entisar_alkayal@hotmail.com

Prof.Dr. Fathy A. Essa
Faculty of Computing and Information Technology

King Abdul Aziz University
Jeddah, Saudi Arabia
fathy55@yahoo.com

Abstract

Desktop Grid computing are developed using different
desktop Computers to benefits from idles computers in an
efficient way to solve complex problems. Desktop Grid system,
which connects a number of personal desktop computers, can
achieve the same computing power as a supercomputer does,
also with a lower cost. The goal of desktop grid system to
aggregate idle computers on the network to utilize them in an
efficient way. In this research we present desktop
computational grid system that used to utilize desktop
computers in Intranet to execute jobs in an efficient way than
using a single computer. We design and implement Service
Oriented Decentralized Job Scheduler (SODJS) framework
based on web services technology. SODJS schedules and
balances the jobs among available resources to minimize jobs
response time. We evaluate SODJS performance by applying
different tests. These tests show that SODJS system provides
good performance compared with using single computer in
terms of job execution time and system throughput.

1. Introduction

 In Desktop grid computing , a wide variety of Desktop
computational resources, storage systems and databases,
special class of scientific instruments (such as radio
telescopes), computational kernels, and so on are logically
coupled together and presented as a single integrated resource
to the user. Desktop Grid management system is more
complicated. Grid development involves the efficient
management of heterogeneous, geographically distributed, and
dynamically available resources. In this environment, the job
scheduler become one of the most critical components of the
Grid management middleware, since it has the responsibility
of selecting resources and scheduling jobs in such a way that
the system provide good performance in term of execution
time.

Job scheduling is an important part of grid management
system. The efficiency and acceptability of resource
management mainly depends on its scheduling strategy. Job
scheduling allocates needed resources to job requests,
including cooperation allocation through different systems.
However, resource scheduling is becoming a complicated
problem because of the dynamic and heterogeneous

characteristics of grid system as well as the different needs for
the resources of the applications applied in grid system [1].

 In this research we study, design, implement and evaluate
prototype of job scheduler that used to manage jobs in desktop
grid based on service oriented technology. SODJS is a
scheduling system which provides an easy way to manage
desktop computers in an efficient way to process a large
number of jobs.

The research is organized as follows: section 1 introduces the
research subject and it also addresses the objectives and
motivation of the research. Section 2 presents briefs
background about the desktop Grid system and it discusses
different job scheduling architecture. Section 3 discusses the
design of proposed Job Scheduler middleware based on web
services architecture and provides a model for Service
Oriented Decentralized Job Scheduler (SODJS). Section 4
discusses the results that are obtained from testing SODJS and
evaluate the system. Section 5 presents the conclusion and
direction for future works.

2. Background

 A job scheduler can be implemented in different
structures, which determine the architecture of the resource
management system and the scalability of the system. Grid
resource management systems can be classified as having
centralized, hierarchical or decentralized job scheduler [2] as
shown in Figure 1.

 Figure 1: Categorization of Job Scheduler

• In a centralized job scheduler, all jobs are submitted
to a single manager that is responsible for scheduling
them on the available resources. Since all the
scheduling information is available at one single

Job
scheduler

Decentrali
zed

Hierarchic
al

Centralize
d

Cooperativ
e

Non-
cooperative

International Conference on Trends in Information Technology and Applications, Ajman (December 11-13, 2010)

82

position, the scheduling decisions are optimal but this
approach is not very scalable in large grid systems
[1].

• In a decentralized job scheduler there is no central
manager, scheduling is done by the resource
requestors and owners independently. This approach
is scalable and suits large grid systems. However,
individual schedulers should cooperate with each
other in making scheduling decisions and the
schedule generated may not be the optimal schedule.

• In a hierarchical job scheduler, the managers are
organized in a hierarchy. High-level resource entities
are scheduled at higher levels and lower level. The
smaller sub-entities are scheduled at lower levels of
the manager hierarchy. This model is a combination
of the above two models [1].

Scheduling policies used by the grid resource management
system can be also classified into two major categories:
system-oriented scheduling or user-oriented scheduling.
System oriented scheduling often strives to maximize over
system throughput , average response time , fairness or a
combination of these , whereas user-oriented scheduling try to
optimize the performance for an individual user , typically by
minimizing the response time for each job submitted by the
user [3] . A centralized manager typically performs system–
oriented scheduling, whereas a decentralized manager often
uses a user-oriented policy. The comparison between a
centralized job scheduler and job decentralized scheduler is
summarized in table 1.

A central job scheduler needs current knowledge about the
entire state of the system at each point in time. This makes it
scale badly with the growth in the size of the system [5].
Failure of the job scheduling results in failure of the whole
system, while in a distributed approach only some of the work
will be lost.

Table 1: Comparison between Centralized and Decentralized

scheduling

 Centralized
Scheduling

Decentralized
Scheduling

Scalability Not scalable Scalable

Fault
tolerance

Single point of
failure

More fault
tolerance

Architecture Client-Server
architecture

Peer-to-Peer and
dynamic

environments

Information
Storage

Keep
information
about all

resources and
jobs

Don’t keep
information about
all resource and

jobs

Performance System-oriented User-oriented

 Many solutions have been developed to solve the job
scheduling problem in grid. Local schedulers, like Condor
project [4], were developed to schedule jobs in a single
compute farm. Meta-schedulers were then introduced to allow
multiple sites to cooperate. The difficulty of allocating jobs
larger than the maximum size of the biggest resources and the
need for a more efficient organization of the Grid led to the
creation of other solutions.

3 .SERVICE ORIENTED DECENTRALIZED JOB SCHEDULER
(SODJS)

In this section, we introduce the architecture of Service
Oriented Decentralized Job Scheduler (SODJS) that is built
based on web services technology to manage desktop grid
systems and scheduling jobs.

Manager in the SODJS structure can be implemented in any
structure depending on numbers of managers in the network.
We allow distributed manager architecture to avoid the
disadvantages in a centralized manager and provide more
scalability in the management system. Distributed managers
are much more dynamic with respect to changes than
centralized approaches, because they do not need the state of
the system at each step to do their job.

The architecture model of SODJS consists of three types of
modules: A Manager module that should be installed in a
server machine. many Executer modules that are used to
execute jobs that are submitted by users and a User module
that can be registered and connected to the system to submit
their jobs and retrieve their results (as shown in figure 2).
Manager provides the management middleware that manage
the SODJS system while an executer node is any machine that
can be registered or connected to SODJS system through
executer interface. Any user on the Local Network Area
(LAN) can register to the system, connect to the manager and
send jobs to the manager.

Figure 2: The General Structure of Centralized SODJS Model

SODJS structure is organized into three layers for more
simplicity and flexibility. Each layer has certain tasks as
shown in Figure 3. The details for each layer are as follows:

- Interface layer: provides resource registration,
authentication and connection. It also provides job

83

submission to allow users to submit their jobs to the
system through user interface.

- Scheduling layer: selects resources for jobs
depending on the load on each resource. The main
functions in scheduling layer are resource selection
and job scheduling.

- Execution layer: provides the execution service for
jobs. This layer executes and monitors jobs, stage job
files to mapped resources, release resources after job
completion and return results after execution.

Figure 3: Grid Scheduling Layers

The manager is responsible for scheduling jobs among
different available executers. In general, each executer may
have single or multiple processors and the processors at
executers can be either homogeneous or heterogeneous. Upon
arrival, jobs must be assigned to exactly one executer for
processing immediately by instantaneous scheduling or wait to
be scheduled by the scheduler services. We assume that jobs
can be executed on any executer and no parallelism and
migration is allowed among executers. The load monitor in
each executer is responsible for probing the current state of
each executer. Arrived jobs will be placed in a waiting queue
at the manager. As the system workload grows heavy, there
are more and more jobs waiting in the queue, the scheduler
performs load balancing over available executer nodes. The
details structure of model is shown in figure 4.

Figure 4: The Architecture of SODJS Model

3.1 Manager Services in SODJS
SODJS Manager manages the machines in the system and it is
responsible for naming machines and registering them in the
system. It also accepts the jobs from users and schedules them
depending on the load-balancing algorithm, then migrate the
job to selected Executer machines to execute it and to accept
the results. Also, it monitors execution of jobs and reschedule
jobs if failure occurs. SODJS Manager consists of numbers of
services each of which performs a specific function of the
manager, and cooperates with each other to satisfy manager
goals and responsibilities. The descriptions of these services
are presented as follow:

• Executers Registration Service :
This service is responsible for managing executer's requests. It
is used to register the new executer machines to the system
database, connects executers to the system after verifying
authentication and disconnects them from the system. The
registration service accepts information about executer
machines. After the function of registration completes
successfully, the manager generates unique ID to that executer
to identify the machine in the system. The Executer ID is used
for connecting the machines to the system or disconnecting
them.

• Users Registration Service :
This service task is managing user's requests to register them
into the system. It is used to register the new user machine to
the system database, connects users to the system after
verifying authentication and disconnects them from the
system. The users submit information about their machines to
the manager machine. After the function of registration
completes successfully, the manager sends the generated
unique ID to the user to identify this machine into the system
.The user Machine ID is used for connecting the machine to
the system or for disconnecting.

• Job Manager Service :

The Job manager service collects the information about jobs in
the SODJS and stores them in the system database. Job
manager service takes a job request from user, stores job files
in the manager machine, and stores the job into waiting queue.
After executing a job, the job manager service also takes the
responsibility of collecting results and sends it back to the
user. When the job failed, the job manager restores the job to
waiting queue for new scheduling.

• Load Balancer Service
The load balancer service is responsible for selecting a
specific executer depending on executer availability and load.
When the job execution failure in the selected executer,
reschedule the fails job on that executer machine to another
executer machine to ensure load balancing of global grid
system. If it failed to receive executer machine information in
a period of validity, re-enter all the jobs scheduled to this
executer into job queue. The load balancer accesses executer
information in the system database that satisfies load-

84

balancing strategies to maximize the executer utilization and
minimize the total job execution time. Then allocate the job to
one of the available executer machines. The Load balancer
selects a job from waiting queue as First Come First serve
(FCFS) algorithm and assigns it to an appropriate executer
depending on the executer load and the number of running
jobs in each executer. The algorithm of executer selector by
load balancer services is shown in Figure 5.

Figure 5: Resource selector algorithm

• Job Scheduler Service
Job scheduler service retrieves jobs ready for execution from
job ready queue and then dispatches the job to the selected
executer. The job scheduler selects the job from the ready
queue depending on FCFS algorithm. In addition, the job
scheduler is responsible for dispatching the job files to a
specific executer.

• System Load Monitor Service
This Service monitors the Load of the system by getting the
load of each available executer from Executer Load Monitor
service in them. This service determines if the system is
loaded or not. The service stores information for each executer
machine in the database. This information is CPU utilization,
Available Memory size, Available hard disk size, and numbers
of completed jobs, numbers of failed jobs and numbers of
running jobs in the system.

• Managers Communication Service
This service is used when architecture of the system has more
than one manager. This service is responsible for
communicating managers with each other. When one system
manager is loaded, it communicates with an unloaded manager
and sends waiting jobs to it. A manager is considered loaded
when its load is greater than 85% of its maximum load. This
service makes our system more scalable, so it can serve many
users and jobs at the same time with good performance.

• Information Database Service (IDS)
Information database service provides services to enable
resource registration while keeping track of a list of available
executers in the SODJS system. The manager can query this
entity for executers contact, configuration, characteristics and
status information. Information contains static information and
dynamic information about executer machines and jobs in
SODJS.

3.2 Executer Services in SODJS
The Executer module in SODJS system consists of a number
of services, each of which performs specific tasks. Executer

functions are: request Register machine to SODJS, connect
and disconnect executer from SODJS, monitor Executer Status
and execute jobs for users and send back the result to
manager.

3.3 User Module Services in SODJS
The User module in SODJS structure consists of a number of
services, each of which performs specific tasks. The user
module functions are: request Register user machine to
SODJS, connect and disconnect to the SODJS, submit jobs
and require input file to SODJS, manage and monitor
submitted jobs.

4. SODJS IMPLEMINTATION AND EVALUATION

In order to validate our approach, we implemented a
services oriented job scheduler by using web service
technologies. Our prototype is a Microsoft .NET application
developed using C Sharp (C#) and Windows Foundation
Communication (WCF), which implement web services with
Visual Studio 2008.

To evaluate the SODJS system, we made various
experiments to measure the efficiency of SODJS scheduling
factors. We tested that our system performs its functions by
scheduling jobs over available executer machines to balance
the load over them. We preformed experiments test on desktop
computers in the Computer Laboratory in Computing and
Information Faculty in king Abdul Aziz University. The
computers that were used in the test are 16 computers
connected with each other in a local area network (LAN).

The jobs in SODJS denote applications executable files that
the SODJS system schedules and runs them. Jobs are
computational jobs that need high performance requirement in
processing. Jobs in our experiments are chosen from scientific
problems such as security algorithms and cryptography.

To test the efficiency of the decentralized scheduler over the
centralized job scheduler we compared the load of the system
when the numbers of jobs and executers nodes in the
centralized job scheduler and in decentralized scheduler are
increased. In addition, we compared the average waiting time
and the average execution time.

Table 2: System Load in centralized and decentralized scheduler

Number of Managers # Jobs
2M and 6E 1M and 6E

36.3 36.5 2
41.5 42.6 3
42.9 43.7 4
43.2 45.25 5
46 48.5 6
46.8 49.9 7
48.7 52.3 8

Input: Queue of Waiting Jobs J, List of Available Executer nodes E
Begin
For each i job in J
Sort List E depending on Executer Load and Numbers of Running jobs
If E is not empty
Remove i from waiting jobs J List
Queue i job in Ready Queue with e Executer
Else if E is empty
Queue i job in Waiting Queue
End

85

Figure 6: System load in Centralized and Decentralized

We perform experiment using two managers with six executer
nodes and compute the execution time for jobs. The results of
experiments are shown in figure 6, 7. Comparing the results
from these experiments with result when using one manager,
we find that using decentralized scheduler gives less execution
time comparing with using centralized manager especially
when numbers of jobs increased.

Table 3: Execution Time in Centralized and Decentralized

Number of Managers # Jobs

2M and 6E 1M and 6E
7.94 7.05 2
11.14 11.18 3
12.06 12.37 4
16.31 16.5 5
30 31.17 6
37.9 39.4 7
38.13 40.34 8

Figure 7: Execution time in Centralized and Decentralized

The waiting time is decreased when using more a
decentralized scheduler because the jobs are distributed over
managers and this makes management of jobs is easier than in
a centralized manager.

Table 4: Waiting Time in centralized and decentralized

Number of Managers # Jobs
2M and 6E 1M and 6E

0.33 0.35 2
038 0.4 3
1.25 1.39 4
4.1 5.5 5
7.90 9.31 6
12.18 15.25 7
18.37 24.26 8

As shown in Table 4, using a decentralized scheduler in a
large number of jobs makes the system to run jobs with a
smaller execution time i.e. it gives good performance in
minimizing execution time compared to centralized manager.

Figure 8: Waiting time in Centralized and Decentralized

4. CONCLOUSION

In this research, we introduced a new Service Oriented
Decentralized Job Scheduler (SODJS) that has been built
based on web services technology for managing desktop grid
systems. SODJS has been designed, implemented and
evaluated. The benefits of SODJS are: increasing available
computing power, maximizing the use of new/existing
resources, minimizing jobs execution time. Finally, SODJS
hides the complexity of the grid to users.

SODJS can be installed as centralized job scheduler on a
single machine or each web service of the manager can be
deployed on a different machine to increase SODJS
performance and scalability if the numbers of both users and
jobs are increased. This means that the performance of SODJS
is not affected (decreased) by jobs scalability. SODJS can be
used as centralized manager architecture or decentralized
manager architecture. This means that SDGM has
decentralized manager advantages, which include scalability,
fault tolerance and peer-to peer functionality. SODJS
manages jobs and executer nodes with good performance by
minimizing job execution time and waiting time.

5. REFERENCES
 [1] Krauter, K., Buyya, R., and Maheswaran, M. (2002), "A
taxonomy and survey of grid resource management systems for
distributed computing". Int. J. of Software Practiceand Experience,
32(2): PP. 135–164.
[2] [Foster, I., Kesselman, C., and Tuecke, S. (2001), "The Anatomy
of the Grid: Enabling ", Scalable Virtual Organizations. Int. J.
Supercomp. App., 15(3): PP.200–222.
[3] Rawat, S. and Rajamani, L. (2009), "Experiments with CPU
Scheduling Algorithm on a Computational Grid ", IEEE International
Advance Computing Conference (IACC 2009), PP. 71-75
[4] Chapman, C., et al. (2004), "Condor Services for the Global Grid
", National Environment Research Council, 2004.
[5] Schopf, J. (2003), "TEN ACTIONS WHEN GRID
SCHEDULING"
[6] Veldman, E. et al. (2009), "Technical Benefits of Distributed
Storage and Load Management in Distribution Grids", IEEE
Bucharest Power Tech Conference, June 28th - July 2nd, Bucharest,
Romania 2009.

86

	3 .Service Oriented Decentralized Job Scheduler (SODJS)
	4. SODJS Implemintation AND Evaluation
	CONCLOUSION
	References

