
JKAU: Comp. Sci., Vol. 5, pp: 75 - 81 (2016 A.D./ 1437 A.H.)

DOI: 10.4197 / Comp. 5 - 5

75

A Cognitive Attraction Network Approach to the Software Team Building
Decision Problem

Omar Elshinnawey, Ghada Abuguyan, and Zohair Chentouf

Software Engineering Department, College of Information and Computer Sciences,

 King Saud University, Riyadh, KSA

zchentouf@ksu.edu.sa

Abstract. Software team selection can be done based on several criteria. One among them is the individual
developers’ productivity. However, the sole productivity cannot be accurate if one has to take into
consideration the goals of the software project. Alignment of the productivity-based decision with the
project’s goals is the aim of the present article. The proposed automatable solution is based on Cognitive
Attraction Networks.
Keywords: Team Building; Software Engineering; Project Management; Cognitive Attraction Networks.

1. Introduction

The optimization of teamwork has been
intensively studied in various areas[1-4]. The early
interest in software teamwork first aimed at the
structure of software teams[5-6] then researchers
began to investigate on the software team
performance factors, like in[7-9]. In[9], for instance,
emphasis is put on the developers’ personality, the
work environment, the structure of the team,
leadership, and communication. The impact of the
team performance on the software project’s goal
achievement also has been studied. For
example,[10-12] highlighted that impact in terms of
productivity, product quality, and project success.
Study of the emergence of individual developers’
factors at the team’s performance level was
performed in[13-16].

The present investigation’s first objective is
an automatic aid to software development team
building based on individual developers’
performance. A second objective is to align the
team member selection with the goals of the

software project. The direct correlation between
developer assignment and the software production
success was highlighted in [17, 18]. In general, it
is up to the project’s leaders to perform the
assignment based on their experience of people,
software constraints (e.g. reliability), and the
project skill requirements. This task becomes
cumbersome with medium and large size projects.
That is because the number of possible
combinations of the candidate software
developers’ roles rapidly degenerates into a too
large solution space. This makes it virtually
impossible to put the hand on an optimal solution.
Hence the need for a decision support system to
help tackle the problem’s complexity. Besides the
complexity of the problem, another research
motivation comes from the fact that well reputed
software process models like People - CMM[19],
Personal Software Process – PSP[20], Team
Software Process – TSP[8], and the Rational
Unified Process – RUP[21], do not model the sub-
process of developer assignment. Our research is
also motivated by a third fact; there are only a few

76 Omar Elshinnawey, et al.,

related works to ours. Ngo-The and Ruhe[22]
proposed a method for assigning developers to
software projects by decomposing a project to a
series of releases. The assignment problem is
solved for every release based on the developers’
competencies. However, the method is only
applicable to mature software teams where the
processes are fully defined, measured, and
controlled. Tsai et al.,[23] proposed a method for
selecting software developers which focuses on
human and material resources rather than task
scheduling. The method is meant to be used under
dynamic and stochastic constraints. It considers
two factors: the developer’s programming
productivity and salary. Otero, et al.,[24] proposed
a process to assign tasks to software developers
while they do not completely fulfill the project
required skills. The process takes into
consideration the actual skills, the required
expertise levels, and the priority of the tasks to
perform.

At the best of our knowledge, there is no
previous research work that addressed the
problem of software task assignment under the
constraint of fulfilling the project’s goals. This is
the aim of our research. First, developers’
competences are mined from the bug-tracking
system content related to previous projects. We
then build a Cognitive Attraction Networks-based
model which encompasses the developers’
competences and the project’s skill requirements
and goals. The assignment algorithm is described
along with a case study.

Section 2 of the present article suggests a
method for mining developers’ competency from
a bug-tracking system. Section 3 presents in detail
the proposed task assignment algorithm. A case
study is presented in Section 4. Section 5
concludes the work.

2. Mining Developers’ Competency

Developers’ competency needs to be known
before assigning the new project’s tasks to them.
We assume that all the candidate developers were
involved in past software projects. The bug-
tracking system should contain information about
the programming and debugging tasks that belong
to the past projects. We mine this pool of
information to conclude the competency level of
every developer. For this aim, we assume the

following features that are present in popular bug-
tracking systems, like[25-26]:

- A bug-tracking system contains defect and
task descriptions.

- Every defect or task was assigned to a single
developer.

- Every defect or task had a start date, a desired
end date, and an actual end date.

We consider the software developers’
competences listed in[27-29]:

- Reasoning: the process of forming
conclusions or inferences from facts or premises.

- Decision making: the ability to make the right
decision on the right time.

- Judgment: to identify the right attributes of an
existing software or human mechanism.

- Stress tolerance: the ability to cope up with
work pressure.

- Openness to change: self-improvement with
present and future software business needs.

- Teamwork and cooperation: the ability to
interact with colleagues and cooperate with them.

Other competences need to be added as well:

- Problem solving: the ability to solve
unexpected technical problems and manage
possible risks.

- Required technical hands-on skills like Java,
Linux, SQL, setting a small network for tests, etc.

- Duration estimation: the ability to deliver
assigned tasks in time.

We assume that the project manager or any

allowed team member has the responsibility of
calculating
the candidate developers’ competences. For every
candidate Dj the manager:

a) Selects a task Ti that was performed by Dj
for some past projects.

b) Calculates the actual duration of the task
as: ݈ܽݑݐܿܣ	݊݅ݐܽݎݑܦ = ݁ݐܽܦ	݀݊ܧ − ݁ݐܽܦ	ݐݎܽݐܵ

c) Determines the list of required
competences and rates the difficulty
degree of each on a scale of 1-5. For the
reasoning competence, for example, this
will be denoted required reasoning score.

d) Assesses the performance of the
developer Dj who was in charge of Ti in

 A Cognitive Attraction Network Approach to the Software Team Building Decision Problem 77

regard to every competence. For the
reasoning skill, for instance, this will be
denoted actual reasoning score, which is
an integer number on the scale 1-5.

e) Calculates the performance factors of the
developer Dj in regard to the task Ti. We
adopt the following metrics, which is
based on the above listed competences:

- Duration Deviation (DD): ܦܦ = 	݊݅ݐܽݎݑ݀	݈ܽݑݐܿܽ − ݁ݐܽ݉݅ݐݏ݁	݊݅ݐܽݎݑ݀݁ݐܽ݉݅ݐݏ݁	݊݅ݐܽݎݑ݀	

- Reasoning Deviation (RD): ܴܦ= 		݁ݎܿݏ	݃݊݅݊ݏܽ݁ݎ	݈ܽݑݐܿܽ − ݁ݎܿݏ	݃݊݅݊ݏܽ݁ݎ	݀݁ݎ݅ݑݍ݁ݎ	݁ݎܿݏ	݃݊݅݊ݏܽ݁ݎ	݀݁ݎ݅ݑݍ݁ݎ	

- Decision Making Deviation (MD): ܦܯ = –	݁ݎܿݏ	݊݅ݏ݅ܿ݁݀	݈ܽݑݐܿܽ ݁ݎܿݏ	݊݅ݏ݅ܿ݁݀	݀݁ݎ݅ݑݍ݁ݎ	݁ݎܿݏ	݊݅ݏ݅ܿ݁݀	݀݁ݎ݅ݑݍ݁ݎ	

- Judgment Deviation (JD): ܦܬ= –		݁ݎܿݏ	ݐ݊݁݉݃݀ݑ݆	݈ܽݑݐܿܽ 	݁ݎܿݏ	ݐ݊݁݉݃݀ݑ݆	݀݁ݎ݅ݑݍ݁ݎ	݁ݎܿݏ	ݐ݊݁݉݃݀ݑ݆	݀݁ݎ݅ݑݍ݁ݎ	

- Stress tolerance Deviation (SD): ܵܦ= –		݁ݎܿݏ	݁ܿ݊ܽݎ݈݁ݐ	ݏݏ݁ݎݐݏ	݈ܽݑݐܿܽ 	݁ݎܿݏ	݁ܿ݊ܽݎ݈݁ݐ	ݏݏ݁ݎݐݏ	݀݁ݎ݅ݑݍ݁ݎ	݁ݎܿݏ	݁ܿ݊ܽݎ݈݁ݐ	ݏݏ݁ݎݐݏ	݀݁ݎ݅ݑݍ݁ݎ	

- Openness to change Deviation (OD): ܱܦ= –		݁ݎܿݏ		ℎܽ݊݃݁ܿ	ݐ	ݏݏ݁݊݊݁	݈ܽݑݐܿܽ 	݁ݎܿݏ		ℎܽ݊݃݁ܿ	ݐ	ݏݏ݁݊݊݁	݀݁ݎ݅ݑݍ݁ݎ	݁ݎܿݏ	ℎܽ݊݃݁ܿ	ݐ	ݏݏ݁݊݊݁	݀݁ݎ݅ݑݍ݁ݎ	

- Team Work and cooperation Deviation
(TWD): ܹܶܦ = –		݁ݎܿݏ		݇ݎݓ	݉ܽ݁ݐ	݈ܽݑݐܿܽ 	݁ݎܿݏ		݇ݎݓ	݉ܽ݁ݐ	݀݁ݎ݅ݑݍ݁ݎ	݁ݎܿݏ	݇ݎݓ	݉ܽ݁ݐ	݀݁ݎ݅ݑݍ݁ݎ	

- Problem solving Deviation (PD): ܲܦ= –		݁ݎܿݏ			݃݊݅ݒ݈ݏ	݈ܾ݉݁ݎ	݈ܽݑݐܿܽ 	݁ݎܿݏ			݃݊݅ݒ݈ݏ	݈ܾ݉݁ݎ	݀݁ݎ݅ݑݍ݁ݎ	݁ݎܿݏ	݃݊݅ݒ݈ݏ	݈ܾ݉݁ݎ	݀݁ݎ݅ݑݍ݁ݎ	

 - Technical Skill X Deviation (XD): ܺ = 	ܦܦ 5	݂݂݀݅	

where: X ∊{Java, PHP, ...}; 1≤ diff ≤ 5 is the
difficulty rate of the required skill X.

f) Repeats steps a)-e) for every task that was
performed by the developer Dj.

g) Calculates the competence gap of Dj with
regard to every one of the above listed
skills as the mean of that skill’s
deviations. For example, the reasoning
gap:

ܩܴ = ܦܴ_݊ܽ݁ܯ
where Mean_RD is the mean of RD of all the
tasks performed by the developer Dj. Similarly, all
the other competence gaps will be calculated,
namely: Duration Gap (DG), Decision Making
Gap (MG), Judgment Gap (JG), Stress tolerance
Gap (SG), Openness to change Gap (OG), Team
Work and cooperation Gap (TWG), Problem
solving Gap (PG), and Technical Skill X Gap
(XG).

3. Software Task Assignment Decision
Problem and Solution

Recall the problem being tackled by the present
research. Given a new software development
project, the related list of software development
tasks, the list of competences required for every
task, the list of candidate developers along with
their competence levels mined from past projects’
data (see Section 2), and the list of goals to fulfill
by the project, the problem to solve is one of
assigning the best candidate developer to every
development task in a way that maximizes the
goal satisfaction and takes into consideration the
competence requirements of the task and the
corresponding actual competence levels of the
developers. Note that a goal can be a non-
functional requirement, such as reliability,
efficiency, usability, availability, portability,
maintainability, etc., or a project constraint such
as time or budget. Formally, a software task
assignment decision problem constituents are: a
set of tasks Ti, i=1, …, NT, a set of goals Gk, k=1,
…, NG, and a set of developers Dj, j=1, …, ND.
Every goal Gk has an importance weight pk∊[0, 1],
with ∑ = 1ேீୀଵ . Every task Ti contributes with
a weight wki∊[0, 1] in satisfying the goal Gk, with ∑ ݓ = 1ே்ୀଵ . Every task Ti requires a
competence a set of competences Cu, u=1, …, NC
(see Section 2) with an importance level riu∊[0, 1], ∑ ௨ݎ = 1ே௨ୀଵ . The competence gap of a developer
Dj with regard to a competence Cu will be denoted
cguj∊[-0.8, 4]. The latter interval values are
engendered by the fact that skill deviations in
Section 2 were based on a 1-5 scale.

78 Omar Elshinnawey, et al.,

Fig.1. CAN of the Software Task Assignment Decision Problem.

We use these formulation elements to construct
a Cognitive Attraction Network (CAN). CAN was
introduced in [30-31]. Figure 1 depicts the
developer assignment problem’s CAN with a
single task. The assignment problem can be
formulated as selecting a developer Dj among the
set of ND candidate developers to be in charge of
a given task Ti under the constraint of fulfilling
the goals G1, …, GNG. For this aim, we need to
calculate the so called cognitive attraction [30] of
the goals made on developers through the
following steps:
a) The attraction of the task Ti performed on

every developer Dj: ݐ = ௨ேݎ
௨ୀଵ ∗ ܿ݃௨

b) The attraction of every goal Gk performed on
every developer Dj: ݃ = ∗ ݓ	 ∗ ݐ

c) The sum of goal attractions made on the
developer Dj: ݃ = ݃ேீ

ୀଵ

Since gj is a function of the developer’s skill
gaps cguj, the developer with the smallest
value of gj is selected for the task Ti.

d) Repeat steps a)-c) for every other task Tv
excluding all the developers Dt who were
selected for previous tasks.

4. Case Study

Let us take an illustrative example. Suppose that
we have three developers: D1, D2, and D3, one
task Ti, three required competences C1, C2, and
C3, and four goals G1, G2, G3 and G4. The

assignment algorithm inputs and processing
results are summarized in Table 1-Table 6.

Table 1. Importance Weights of Goals (pk)

G1 G2 G3 G4

0.150 0.150 0.300 0.400

Table 2. Contributions of The Task Ti IN Goals (wki)

G1 G2 G3 G4

Ti 0.300 0.400 0.200 0.500

Table 3. COMPETENCES’ IMPORTANCE WEIGHTS

FOR THE TASK Ti (riu)

C1 C2 C3

Ti 0.200 0.300 0.500

Table 4. DEVELOPERS’ COMPETENCE GAPS (cguj)

D1 D2 D3

C1 -0.200 1.500 -0.750

C2 0.250 -0.500 0.670

C3 0.670 0.250 0.670

Table 5. ATTRACTION OF Ti ON DEVELOPERS (tij)

D1 D2 D3

Ti 0.370 0.275 0.386

Table 6. ATTRACTION OF GOALS ON DEVELOPERS
(gkj and gj)

D1 D2 D3
G1 0.017 0.012 0.017
G2 0.022 0.017 0.023
G3 0.022 0.017 0.023
G4 0.074 0.055 0.077
Sum 0.135 0.100 0.141

 cg11 D1

 [p1] G1 C1 . . .
 . . . w1i ri1 . . .
 Ti

[pNG] GNG wNGi riNC CNC . . .
 cgNCND DND

 A Cognitive Attraction Network Approach to the Software Team Building Decision Problem 79

Based on the results of Table 6, the best
candidate for the task Ti is the developer D2.

5. Conclusion
This paper presented a Cognitive Attraction
Network-based algorithm destined to support the
project manager in team selection under the
constraints of software project’s goals, skill
requirements, and candidate developers’ actual
competences. These competences need to be
mined from the bug-tracking system of the
company. Specifically, the data related to the past
tasks completed by the candidate developers are
to be exploited to infer their individual
competence gaps. The proposed mining method
can easily be automated as a feature of the bug-
tracking system itself. In this way, the task of
calculating the developers’ competence gaps
would be dramatically simplified. The proposed
task assignment algorithm builds on the results of
this competency calculation. The algorithm’s
output is a ranking of developers’ suitability for
every project’s task.

As future work, there should be an empirical
validation through real utilization and evaluation
of the proposed solution.

References

[1] Cohen, S. G. and Bailey, D. E., “What Makes Team
Work: Group Effectiveness Research from the Shop
Floor to the Executive Suite,” Journal of Management,
23: 239-290, 1997.

[2] Guzzo, R. A. and Dickson, M. W., “Teams In
Organizations: Recent Research on Performance and
Effectiveness,” Annual review of psychology, 47: 307-
38, 1996.

[3] Mathieu, J., Maynard, M. T., Rapp, T. and Gilson, L.,
“Team Effectiveness 1997-2007: A Review of Recent
Advancements and a Glimpse into the Future,” Journal
of Management, 34, (3): 410-476, 2008.

[4] Rasch, R. H. and Tosi, H. L., “Factors affecting software
developers’ performance: An integrated approach,” MIS
Quarterly, 16, (3): 395 - 413, Sept, 1992.

[5] Baker, F., “Chief programmer team management of
production programming,” IBM Systems Journal, 11,
(1): 56-73, Jan. 1972.

[6] Brooks, F., The Mythical Man-Month, Addison-Wesley,
1975.

[7] Constantine, L., Peopleware Papers: The Notes on the
Human Side of Software, Prentice-Hall, 2001.

[8] DeMarco, T. and Lister, T., Peopleware: Productive
Projects and Teams, 2nded. New York: Dorset House
Publishing Co, 1999.

[9] Shneiderman, B., Software Psychology: Human Factors
in Computer and Information Systems, Winthrop
Publishers, 1980.

[10] Boehm, B. W. Software Engineering Economics,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

[11] Curtis, B., Hefley, W. E. and Miller, S. A., People
Capability Model (P-CMM),Software Eng. Inst.,
Carnegie Mellon Univ., 2001, version 2.0, tech. rep.
CMU/SEI-2001-MM-001.

[12] McConnell, S. “Problem programmers,” IEEE
Software, 15, (2): 126–128, 1998.

[13] Acuña, S. T. Gómez, M. and Juristo, N., “How do
personality, teamprocesses and task characteristics relate
to job satisfaction and software quality?” Information and
Software Technology, 51, (3): 627-639, March, 2009.

[14] Bradley, J. H. and Hebert, F. J., “The effect of
personality type on team performance,” Journal of
Management Development, 16, (5): 337–353, 1997.

[15] Guinan, P. J., Cooprider, J. G. and Faraj, S.
“Enabling software development team performance
during requirements definition: A behavioral versus
technical approach,” Information System Research, 9,
(2): 101–125, June 1998.

[16] Rajendran, M., “Analysis of team effectiveness in
software development teams working on hardware and
software environments using Belbin Self-perception
Inventory”, Journal of Management Development, 24,
(8): 738-753, 2005.

[17] Campion, M. A. Medsker, G. J. and Higgs, A. C.,
“Relations between Work Group Characteristics and
Effectiveness: Implications for Designing Effective
Work Groups”, Personnel Psychology, 46, (4): 823 –
847, 1993.

[18] Cohen, S. G., “Designing Effective Self-Managing
Work Teams”, In M. Beyerlein ed., Advances in
interdisciplinary studies of work teams, vol. 1, Series of
self-managed work teams, Greeenwich, Connecticut, JAI
Press, 1993.

[19] Curtis, B., Hefley, W. E. and Miller, S. A., People
Capability Model (P-CMM),Software Eng. Inst.,
Carnegie Mellon Univ., 2001, version 2.0, tech. rep.
CMU/SEI-2001-MM-001.

[20] Silva, F. Q. B. da. and França, A. C. C., “Towards
Understanding the Underlying Structure of Motivational
Factors for Software Engineers to Guide the Definition
of Motivational Programs”, Journal of Systems and
Software. Article in Press.

[21] Diagnostic and Statistical Manual of Mental Disorders
(DSM-IVTR), Fourth ed., Text Revision, American
Psychiatric Association, 2000.

[22] Ngo-The, A. and Ruhe, G., “A systematic approach for
solving the wicked problem of software release
planning, Soft Computing, 12, (1): 95–108, 2008.

[23] Tsai, H., Moskowitz, H. and Lee, H., “Human resource
selection for software development projects using
Taguchi’s parameter design”,European Journal of
Operational Research, 153, (1): 167–180, 2003.

[24] Otero, L.D., Centeno, G., Ruiz-Torres, A.J., and
Otero, C.E., “A systematic approach for resource
allocation in software projects”, Computers & Industrial
Engineering, 56, (4): 1333–1339, 2009.

[25] BugZilla, “BugZilla Features” [online] retrieved
Januaery 2016 from http://www.bugzilla.org/
features/.

80 Omar Elshinnawey, et al.,

[26] Mantis, “Mantis Feature List” [online] retrieved January

2016 from, http://www.mantisbt.org/wiki/doku.php/
s:features.

[27] Belkadi, F. and Bonjour, E., “Competency
characterization by means of work situation modeling,
Computers in Industry”, 58, (2): 164-178, 2007.

[28] Draganidis, F. and Mentzas, G., “Competency based
management: a review of systems and approaches”,

Information Management & Computer Security, 14, (1):
51-64, 2006.

[29] Acuña, S. T., Juristo, N. and Moreno, A. M.,
“Emphasizing Human Capabilities in Software
Development”, IEEE Software, 23, (2): 94-101, 2006.

[30] Chentouf, Z., “Cognitive Attraction Theory and Moral
Judgment,” Psychology, 4, (1): 38-43, 2013.

[31] Chentouf, Z., “Homo Informaticus”, L’Harmattan,
Paris, 2000.

 A Cognitive Attraction Network Approach to the Software Team Building Decision Problem 81

 مقاربة لتشكيل فرق مبرمجين باستخدام شبكات الجذب المعرفي

 عمر الشناوي، وغادة أبوقيان، وزهير شنتوف

 قسم هندسة البرمجيات، كلية علوم الحاسب والمعلومات، جامعة الملك سعود
 العربية السعودية الرياض، المملكة

من بينها , تعتمد عملية اختيار أعضاء فريق إنجاز مشروع برمجيات على كثير من المعايير .المستخلص

خصوصًا عند , د على الإنتاجية وحدها يجانب الدقة في كثير من الأحيانلكن الاعتما. إنتاجية المبرمجين
أول هدفين لهذه الورقة البحثية هو إيجاد نموذج مفهومي يربط . النظر إلى علاقتها بأهداف المشروع كافة

وثاني الهدفين هو أتمتة النموذج . بين القرارات المبنية على الإنتاجية وأهداف المشروع على اختلافها
 . باستعمال شبكات الجذب المعرفي

82 Omar Elshinnawey, et al.,

