Reactivity Enhancement of 2-Propanol Photocatalysis on SO₄²⁻/TiO₂ Catalyst: Insights from Solid-State NMR Spectroscopy

Hailu Zhang, Anmin Zheng, Feng Deng*

^aState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (^{*}E-mail: dengf@wipm.ac.cn; Fax: +86-27-87199291)

Heterogeneous photocatalytic oxidations have been attracting considerable attention for their removing of low concentration organic pollutants in both gas and liquid phases. TiO₂, for its outstanding photocatalytic activity, chemical stability, low cost and non-toxicity, is widely used as a photocatalyst. In order to improve the photocatalytic activity of TiO₂, a number of modification techniques have been developed. Recently, sulphated TiO₂ (SO₄²⁻/TiO₂) solid acid has been introduced as a photocatalyst for its higher catalytic activity compared with pure TiO₂ in the photodegradation of some organic compounds. However, how the sulphation affects the surface acidity as well as the reactivity of the catalyst is poorly understood.

In the present study, solid-state NMR techniques have been employed to investigate the surface acidic properties of TiO₂ and sulphated TiO₂, as well as their photocatalytic activities towards 2-propanol. On anatase TiO₂, apart from Lewis acid sites, some less acidic bridging hydroxyl groups are present. After the sulfation of TiO₂, three different types of strong Brønsted acid sites are generated, and their acid strengths are slightly stronger than that of zeolite HZSM-5, but still weaker than that of 100% H_2SO_4 . The results can help us to understand the formation of surface-bound species: on the pure TiO₂, both hydrogen-bonded 2-propanol and Ti-bound 2-propoxy species are present with the former being predominant, while on the $SO_4^{2^-}/TiO_2$ catalyst the formation of Ti-bound 2-propoxy species is preferred. Our NMR experiments also give a comprehensive understanding the photocatalytic degradation of 2-propanol: on the pure TiO₂, the physisorbed 2-propanol can be converted to acetone that is difficult to be further converted into CO₂, and the conversion of 2propoxy species to 2-propanol hampers its direct mineralization; while on the SO₄²⁻ /TiO₂ catalyst, the dominant Ti-bound 2-propoxy species can be directly converted to the final product CO₂, which enhances the activity of 2-propanol photocatalysis. In addition, the surface S-bound 2-propoxy species are also formed on the SO_4^{2-}/TiO_2 catalyst and these species are nearly unreactive, probably due to the relatively longer distance between the S-bound 2-propoxy species and the TiO_2 surface which may block the transfer of photogenerated hole.

Keywords: photocatalysis; sulphated TiO₂; solid-state NMR; surface acidity; reaction mechanism

Figure 1. ¹³C MAS spectra of 2-propanol on TiO_2 and SO_4^2 -/TiO₂ during photocatalytic oxidation. Irradiation times are noted as shown. Asterisks denote spinning sidebands. The signal at *ca.* 112 ppm is due to the background of the NMR rotor.