Indian Journal of Chemistry
Vol. 45B, May 2006, pp. 00.00

Thermal condensation of 3-trifluoromethyl- / and 3-amino-1-phenyl-2-pyrazolin-5-ones with aromatic aldehydes. Synthesis of 4-arylidene-pyrazolones and pyrazolopyranopyrazoles

Tariq R Sobahi
Department of Chemistry, Faculty of Science,
King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia.
E.mail: drtariq_s@hotmail.com

Received 19 April 2005; aceepted (revised) 4 July 2005
1-Phenyl-3-trifluoromethyl-2-pyrazolin-5-one $\mathbf{1}$ on heating with aromatic aldehydes at $160-70{ }^{\circ} \mathrm{C}$ affords the corresponding 4-arylidene-2-pyrazolin-5-ones $\mathbf{3}$, while 3-amino-1-phenyl-2-pyrazolin-5-one 2 on heating with aldehydes gives pyrazolopyranopyrazole derivatives 4 with high yields. These new products have been characterized by spectroscopic techniques and elemental analysis.

Keywords: Thermal condensation, aromatic aldehydes, arylidene-pyrazolones, pyrazolopyranopyrazoles, pyrazolinones
IPC: Int.Cl. ${ }^{7} \mathrm{C} 07 \mathrm{D}$
5-Pyrazolones are very important class of heterocycles due to their biological and pharmacological activities ${ }^{1,2}$ which exhibit anti-inflammatory ${ }^{3}$, herbicidal ${ }^{4}$, fungicidal ${ }^{5}$, bactericidal ${ }^{5}$ and plant growth regulating properties ${ }^{4}$. They are also antipyretic ${ }^{6}$ and protein kinase inhibitors ${ }^{7}$. They are used as key starting materials for the synthesis of commercial aryl/hetarylazopyrazolone dyes ${ }^{8,9}$. It is well known that 4 -arylidenepyrazolones have anti-fungal properties ${ }^{10-13}$, and are used as photographic dyes or intermediates in pharmaceuticals ${ }^{14-16}$.

We report herein the synthesis of some new intensely coloured 4-arylidene-pyrazolones which may have pharmacological properties.

Results and Discussion

Heating of an equimolar amounts of ethyl 4,4,4trifluoroacetoacetate and phenylhydrazine at 150-60 ${ }^{\circ} \mathrm{C}$ for 3 hr resulted in the formation of 1-phenyl-3-trifluoromethyl-2-pyrazolin-5-one ${ }^{17} \mathbf{1}$ in 89% yield. The product 1 and the commercial 3-amino-1-phenyl-2-pyrazolin-5-one 2 are used as key starting for the synthesis of 4-arylidene-5-pyrazolones.

When equimolar amounts of 1-phenyl-3-trifluoromethyl-2-pyrazolin-5-one $\mathbf{1}$ and aromatic aldehydes are heated at $160-70^{\circ} \mathrm{C}$, they result in the formation of 4-arylidene-1-phenyl-3-trifluoromethyl-2-pyrazolin-5-ones 3a-i (Scheme I).

The structures of compounds 3a-i have been confirmed by UV-Vis, IR and ${ }^{1} \mathrm{H}$ NMR spectra and elemental analysis (Table I).

Substitution of amino group in position-3 causes the reaction to take a different pathway. Treatment of 3-amino-1-phenyl-2-pyrazolin-5-one 2 with aromatic aldehydes (1:3 molar ratio) at $160-70^{\circ} \mathrm{C}$ in the absence of solvent resulted in the condensation of 3 molecules of aromatic aldehydes with two molecules of pyrazolone 2. The reaction resulted in the formation of 4 -aryl- N, N^{\prime}-diarylidene-1,7-diphenyl$1 H, 4 H, 7 H$-pyrazolo[4',3':5,6] pyrano[2,3-c] pyrazole-3,5-diamines 4a-g (Scheme II).

The IR spectra of pyrazolopyranopyrazoles 4 showed the absence of the stretching frequencies of $\mathrm{C}=\mathrm{O}$ of cyclic lactam, enolic OH and amino group.

The structures of compounds 4a-g have been established by IR and ${ }^{1} \mathrm{H}$ NMR spectral data and elemental analysis (Table II).

Experimental Section

All the melting points reported are uncorrected. IR spectra were recorded on a Perkin Elmer's Spectrum RXIFT-IR spectrophotometer (v in cm^{-1}); ${ }^{1} \mathrm{H}$ NMR spectra on a Bruker Avance DPX400 spectrometer using pyridine- d_{5} as a solvent and TMS as an internal standard (chemical shifts in δ, ppm); and UV-Vis spectra in ethanol using Shimadzu, Carry 50 (λ in nm). Elemental analyses were preformed on PerkinElmer 2400, series II micro-analyzer. Ethyl 4,4,4trifluoroacetoacetate and 3-amino-1-phenyl-2-pyrazolin-5-one were Aldrich products and were used without any further purification.

Synthesis of 1-phenyl-3-trifluoromethyl-2-pyrazolin-5-one ${ }^{17}$ 1. A mixture of ethyl 4,4,4trifluoroacetoacetate $(9.2 \mathrm{~g}, \quad 0.05 \mathrm{~mole})$ and phenylhydrazine ($4.5 \mathrm{~g}, 0.055$ mole) was heated under air condenser in an oil-bath at $150-60^{\circ} \mathrm{C}$ for 3 hr , then cooled and triturated with diethyl ether (20 mL). The ether was removed by filteration and the solid residue was crystallized from ethanol to give 1-phenyl-3-
trifluoromethyl-2-pyrazolin-5-one 1 ($10.13 \mathrm{~g}, 89 \%$) as white crystals, m.p. $200^{\circ} \mathrm{C}$; FTIR: 1676 (C=O cyclic lactam), 3065 (CH aromatics) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 5.89(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}_{4}-\mathrm{H}$), 7.37-7.82 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{OF}_{3}$: C, $52.62 ; \mathrm{H}, 3.09 ; \mathrm{N}, 12.28$. Found: C, 52.53 ; H, 3.04; N, 12.17 \%.

Synthesis of 4-arylidene-1-phenyl-3-trifluoro-methyl-2-pyrazolin-5-ones 3a-i. A mixture of $\mathbf{1}$ $(2.28 \mathrm{~g}, 0.01$ mole) and aromatic aldehydes $(0.012$ mole) was heated in an oil-bath at $160-70^{\circ} \mathrm{C}$ for 4 hr , cooled, triturated with ether (20 mL) and filtered off. The coloured residues were crystallized from the proper solvents to get the corresponding, 4-arylidene-1-phenyl-3-trifluoromethyl-2-pyrazolin-5-ones 3a-i as coloured crystals. The characterization data of arylidenepyrazolones $\mathbf{3}$ are listed in Table I.

Synthesis of 4 -aryl-N,N'-diarylidene-1,7-di-phenyl-1H,4H,7H-pyrazolo[4',3':5,6]- pyrano[2,3-c] pyrazole-3,5-diamine $\mathbf{4 a - g}$. A mixture of $2(1.75 \mathrm{~g}$, 0.01 mole) and aromatic aldehydes (0.032 mole) was heated in an oil-bath at $160-70^{\circ} \mathrm{C}$ for 4 hr , cooled, triturated with ether $(20 \mathrm{~mL})$ and filtered off. The solid products were crystallized from suitable solvents to give the corresponding 4a-g. The characterization data of pyrazolopyranopyrazoles $\mathbf{4 a}-\mathrm{g}$ are listed in Table II.

References

1 Scheibye S, El-Barbary A A, Lawesson S O, Fritz H \& Rihs G, Tetrahedron, 38, 1982, 3753.
2 Weissberger A, Wiley R H \& Wiley P, in The Chemistry of Heterocyclic Compounds: Pyrazolinones, pyrazolidones and derivatives, (John Wiley, New York), 1964.
3 Hiremith S P, Rudresh K \& Saundan A R, Indian J Chem, 41B, 2002, 394.
4 Joerg S, Reinhold G, Otto S, Joachim S H, Robert S \& Klaus L, Ger Offen, 04 Feb. 1988; DE 3, 625, 686 (Cl C07D 231/22); Chem Abstr, 108, 1988, 167465.
5 Dhol P N, Achary T E \& Nayak A, J Indian Chem Soc, 52, 1975, 1196.
6 Souza F R, Souaza V T, Ratzlaff V, Borges L P, Olivera M R, Bonacorso H G, Zanatta N, Martina M A \& Mello C F, Eur J Pharma, 451(2), 2002, 141.
7 Singh J \& Tripathy R, PCT Int Appl, 2001, 138.
8 Karci F \& Ertan N, Dyes Pigments, 55, 2002, 99.
9 Ho Y W, Dyes Pigments, 64, 2005, 223.
10 Ishihara; Japan Kokai Tokkyo Koho, 81, 127, 360 (Cl CO7D 231/ 20),06Oct. 1981, Appl. 80/29, 11 May, 1980, 829.
11 Pathak R B \& Bahel S C, J Indian Chem Soc, 57, 1980, 1108.
12 Sammour A, Zimaity A \& El-Borai T, J Prakt Chim, 314, 1972, 612
13 Wrzeciono U \& Jobke E, Acta Pol Pharm, 36, 1978, 264, 629.

14 Wariishi K, Japan Kokai Tokkyo Koho, JP 08 20, 58296 20, 582; Chem Abstr, 124, 1996, 317154k.
15 Ubeda T \& Akama Y, Chem Phys Lett, 222, 1994, 559.
16 Li-Jiau H, Sheng-Chu K \& HanTch L, Taiwan Yao Hsuch Tsa Chih, 31, 1979, 47; Chem Abstr, 93, 1980, 71631.
17 Destevens G, Halamandaris A, Wenk P \& Dorfman L, J Am Chem Soc, 81, 1959, 6292.

1

h)

Scheme I

e)

c)

Scheme II

Table I-The characterization data of compounds 3a-i								
Compd	Mol. Formula (Mol. wt)	$\text { m.p. },{ }^{\circ} \mathrm{C}$ (Colour)	Solvent of crystallization (yield \%)	Calcd (Found) \%			UV-Vis in ethanol (λ in nm)	${ }^{1} \mathrm{H}$ NMR in CDCl_{3} (δ, ppm)
				C	H	N		
3a	$\underset{(395.17)}{\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{gathered} 157-59 \\ \text { (yellow) } \end{gathered}$	$\begin{gathered} \text { B + P.E } \\ (94) \end{gathered}$	$\begin{gathered} 51.67 \\ (51.58 \end{gathered}$	$\begin{aligned} & 2.55 \\ & 2.50 \end{aligned}$	$\begin{gathered} 7.09 \\ 6.96) \end{gathered}$	--	7.12-8.04 (m, 10H, $\left.9 \times \mathrm{Ar}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right)$
3b	$\underset{(350.72)}{\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{gathered} 166-67 \\ \text { (orange) } \end{gathered}$	$\text { P.E. } 60-80$	$\begin{gathered} 58.22 \\ (58.11 \end{gathered}$	$\begin{aligned} & 2.87 \\ & 2.83 \end{aligned}$	$\begin{aligned} & 7.99 \\ & 7.85) \end{aligned}$	--	7.19-8.51 (m, 10H, $\left.9 \times \mathrm{Ar}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right)$
3 c	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O} \\ (350.72) \end{gathered}$	$\begin{gathered} 245-46 \\ \text { (yellow) } \end{gathered}$	Acetic acid (77)	$\begin{gathered} 58.22 \\ (58.14 \end{gathered}$	$\begin{aligned} & 2.87 \\ & 2.85 \end{aligned}$	$\begin{aligned} & 7.99 \\ & 7.82) \end{aligned}$	--	7.16-7.98 (m, 10H, $\left.9 \times \mathrm{Ar}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right)$
3d	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (332.28) \end{gathered}$	$\begin{gathered} 222 \\ \text { (orange) } \end{gathered}$	Ethanol (85)	$\begin{aligned} & 61.45 \\ & (61.27 \end{aligned}$	$\begin{aligned} & 3.34 \\ & 3.26 \end{aligned}$	$\begin{gathered} 8.43 \\ 8.33) \end{gathered}$	395	$\begin{aligned} & 7.37-8.02\left(\mathrm{~m}, 10 \mathrm{H}, 9 \times \mathrm{Ar}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right) \\ & 17.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \end{aligned}$
3 e	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (346.30) \end{gathered}$	$\begin{aligned} & 128-30 \\ & \text { (orange) } \end{aligned}$	Ethanol (91)	$\begin{gathered} 62.43 \\ (62.25 \end{gathered}$	$\begin{aligned} & 3.78 \\ & 3.67 \end{aligned}$	$\begin{aligned} & 8.09 \\ & 7.88) \end{aligned}$	375	$\begin{aligned} & 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.03-8.69(\mathrm{~m}, 10 \mathrm{H} \text {, } \\ & \left.9 \times \mathrm{Ar}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right) \end{aligned}$
3 f	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \\ (376.33) \end{gathered}$	$\begin{gathered} 192 \\ \text { (orange) } \end{gathered}$	Ethanol (93)	$\begin{gathered} 60.64 \\ (60.49 \end{gathered}$	$\begin{aligned} & 4.02 \\ & 3.98 \end{aligned}$	$\begin{gathered} 7.44 \\ 7.27) \end{gathered}$	405	$\begin{aligned} & 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) \text {, } \\ & 6.43-9.54\left(\mathrm{~m}, 9 \mathrm{H}, 8 \times \mathrm{Ar}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right) \end{aligned}$
3g	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \\ (360.29) \end{gathered}$	$\begin{gathered} 204-05 \\ \text { (orange) } \end{gathered}$	$\begin{aligned} & \text { THF } \\ & \text { (93) } \end{aligned}$	$\begin{aligned} & 60.01 \\ & (59.77 \end{aligned}$	$\begin{aligned} & 3.08 \\ & 3.01 \end{aligned}$	$\begin{aligned} & 7.78 \\ & 7.69) \end{aligned}$	405	$\begin{aligned} & 6.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{CH}_{2}\right), 6.94-7.91(\mathrm{~m}, 8 \mathrm{H}, \\ & \text { Ar-H), } 8.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right) \end{aligned}$
3h	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O} \\ (359.35) \end{gathered}$	$\begin{gathered} 185-87 \\ \text { (red) } \end{gathered}$	Ethanol (93)	$\begin{aligned} & 63.51 \\ & (63.42 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 4.38 \end{aligned}$	$\begin{gathered} 11.69 \\ 11.56) \end{gathered}$	380	$\begin{aligned} & 3.15\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 6.85-7.93(\mathrm{~m}, 9 \mathrm{H}, \\ & \mathrm{Ar}-\mathrm{H}), 8.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right) \end{aligned}$
3 i	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \\ (382.34) \end{gathered}$	$\begin{gathered} 223 \\ \text { (yellow) } \end{gathered}$	Ethanol (65)	$\begin{gathered} 65.97 \\ (65.81 \end{gathered}$	$\begin{aligned} & 3.43 \\ & 3.40 \end{aligned}$	$\begin{aligned} & 7.33 \\ & 7.23) \end{aligned}$	395	$\begin{aligned} & 7.03-8.02\left(\mathrm{~m}, 12 \mathrm{H}, 11 \times \mathrm{Ar}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}\right), \\ & 17.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \end{aligned}$
B $=$ Benzene, P.E. $=$ Petroleum ether (60-80), THF $=$ Tetrahydrofuran.								

Table II-The characterization data of compounds 4a-g							
Compd	Mol. Formula (Mol. wt)	m.p., ${ }^{\circ} \mathrm{C}$ (Colour)	Solvent of crystallization (yield \%)	Calcd (Found) \%			${ }^{1} \mathrm{H}$ NMR in CDCl_{3} (δ, ppm)
				C	H	N	
4a	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O} \\ (596.70) \end{gathered}$	$\begin{aligned} & \text { 204-06 } \\ & \text { (white) } \end{aligned}$	Methanol (61)	$\begin{gathered} 78.50 \\ (78.35 \end{gathered}$	$\begin{aligned} & 4.73 \\ & 4.69 \end{aligned}$	$\begin{gathered} 14.08 \\ 13.94) \end{gathered}$	$\begin{aligned} & 5.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 6.99-7.75(\mathrm{~m}, 27 \mathrm{H}, 25 \times \mathrm{Ar}-\mathrm{H}, \\ & 2 \times \mathrm{N}=\mathrm{CH}) \end{aligned}$
4b	$\underset{(833.39)}{\mathrm{C}_{39} \mathrm{H}_{25} \mathrm{Br}_{3} \mathrm{~N}_{6} \mathrm{O}}$	$\begin{aligned} & 239-41 \\ & \text { (white) } \end{aligned}$	Methanol (59)	$\begin{gathered} 56.21 \\ (56.09 \end{gathered}$	$\begin{aligned} & 3.02 \\ & 2.98 \end{aligned}$	$\begin{aligned} & 10.08 \\ & 9.95) \end{aligned}$	$\begin{aligned} & 5.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 7.08-7.79(\mathrm{~m}, 24 \mathrm{H}, 22 \times \mathrm{Ar}-\mathrm{H}, \\ & 2 \times \mathrm{N}=\mathrm{CH}) \end{aligned}$
4c	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O} \\ (700.03) \end{gathered}$	$233-35$ (white)	Methanol (57)	$\begin{gathered} 66.92 \\ (66.75 \end{gathered}$	$\begin{aligned} & 3.60 \\ & 3.52 \end{aligned}$	$\begin{gathered} 12.01 \\ 11.86) \end{gathered}$	$5.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 7.09-7.50(\mathrm{~m}, 24 \mathrm{H}, 22 \times \mathrm{Ar}-\mathrm{H},$
4d	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O} \\ (700.03) \end{gathered}$	$214-16$ (white)	Ethanol (58)	$\begin{gathered} 66.92 \\ (66.81 \end{gathered}$	$\begin{aligned} & 3.60 \\ & 3.53 \end{aligned}$	$\begin{gathered} 12.01 \\ 11.95) \end{gathered}$	$\begin{aligned} & 5.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 7.10-7.63(\mathrm{~m}, 24 \mathrm{H}, 22 \times \mathrm{Ar}-\mathrm{H}, \\ & 2 \times \mathrm{N}=\mathrm{CH}) \end{aligned}$
4 e	$\begin{gathered} \mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{4} \\ (686.78) \end{gathered}$	244-46 (white)	Benzene (56)	$\begin{gathered} 73.45 \\ (73.28 \end{gathered}$	$\begin{aligned} & 4.99 \\ & 4.97 \end{aligned}$	$\begin{gathered} 12.24 \\ 12.10) \end{gathered}$	$3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 6.74-7.54(\mathrm{~m}, 24 \mathrm{H}$, $22 \times \mathrm{Ar}-\mathrm{H}, 2 \times \mathrm{N}=\mathrm{CH}$)
4 f	$\begin{gathered} \mathrm{C}_{45} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{7} \\ (776.86) \end{gathered}$	$\begin{aligned} & \text { 231-33 } \\ & \text { (white) } \end{aligned}$	Methanol (53)	$\begin{gathered} 69.58 \\ (69.46 \end{gathered}$	$\begin{aligned} & 5.19 \\ & 5.14 \end{aligned}$	$\begin{gathered} 10.82 \\ 10.68) \end{gathered}$	$3.50\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\right.$ $\mathrm{H}), 7.03-7.88(\mathrm{~m}, 21 \mathrm{H}, 19 \times \mathrm{Ar}-\mathrm{H}, 2 \times \mathrm{N}=\mathrm{CH})$
4g	$\begin{gathered} \mathrm{C}_{42} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{7} \\ (728.73) \end{gathered}$	$\begin{aligned} & 222-25 \\ & \text { (white) } \end{aligned}$	Ethanol (53)	$\begin{gathered} 69.23 \\ (69.15 \end{gathered}$	$\begin{aligned} & 3.87 \\ & 3.80 \end{aligned}$	$\begin{gathered} 11.53 \\ 11.36) \end{gathered}$	$5.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 5.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{CH}_{2}\right), 5.88(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{O}_{2} \mathrm{CH}_{2}$), $5.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{CH}_{2}\right), 6.64-7.44$ (m, $21 \mathrm{H}, 19 \times \mathrm{Ar}-\mathrm{H}, 2 \times \mathrm{N}=\mathrm{CH}$)

