Thermal condensation of 3-trifluoromethyl- / and 3-amino-1-phenyl-2-pyrazolin-5-ones with aromatic aldehydes. Synthesis of 4arylidene-pyrazolones and pyrazolopyranopyrazoles

Tariq R Sobahi

Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia. E.mail: drtariq_s@hotmail.com

Received 19 April 2005; accepted (revised) 4 July 2005

1-Phenyl-3-trifluoromethyl-2-pyrazolin-5-one 1 on heating with aromatic aldehydes at 160–70 °C affords the corresponding 4-arylidene-2-pyrazolin-5-ones 3, while 3-amino-1-phenyl-2-pyrazolin-5-one 2 on heating with aldehydes gives pyrazolopyranopyrazole derivatives 4 with high yields. These new products have been characterized by spectroscopic techniques and elemental analysis.

Keywords: Thermal condensation, aromatic aldehydes, arylidene-pyrazolones, pyrazolopyranopyrazoles, pyrazolinones

IPC: Int.Cl.⁷ C 07 D

5-Pyrazolones are very important class of heterocycles due to their biological and pharmacological activities^{1,2} anti-inflammatory³, herbicidal⁴. exhibit which fungicidal⁵, bactericidal⁵ and plant growth regulating properties⁴. They are also antipyretic⁶ and protein kinase inhibitors⁷. They are used as key starting materials for the synthesis of commercial aryl/hetarylazopyrazolone dyes^{8,9}. It is well known that 4-arylidenepyrazolones have anti-fungal properties¹⁰⁻¹³, and are used as photographic dyes or intermediates in pharmaceuticals¹⁴⁻¹⁶.

We report herein the synthesis of some new intensely coloured 4-arylidene-pyrazolones which may have pharmacological properties.

Results and Discussion

Heating of an equimolar amounts of ethyl 4,4,4trifluoroacetoacetate and phenylhydrazine at 150-60 °C for 3 hr resulted in the formation of 1-phenyl-3trifluoromethyl-2-pyrazolin-5-one¹⁷ **1** in 89% yield. The product **1** and the commercial 3-amino-1-phenyl-2-pyrazolin-5-one **2** are used as key starting for the synthesis of 4-arylidene-5-pyrazolones. When equimolar amounts of 1-phenyl-3trifluoromethyl-2-pyrazolin-5-one **1** and aromatic aldehydes are heated at 160-70°C, they result in the formation of 4-arylidene-1-phenyl–3-trifluoromethyl-2-pyrazolin-5-ones **3a-i** (Scheme I).

The structures of compounds **3a-i** have been confirmed by UV-Vis, IR and ¹H NMR spectra and elemental analysis (**Table I**).

Substitution of amino group in position-3 causes the reaction to take a different pathway. Treatment of 3-amino-1-phenyl-2-pyrazolin-5-one **2** with aromatic aldehydes (1:3 molar ratio) at 160-70 °C in the absence of solvent resulted in the condensation of 3 molecules of aromatic aldehydes with two molecules of pyrazolone **2**. The reaction resulted in the formation of 4-aryl-N,N'-diarylidene-1,7-diphenyl-1H,4H,7H-pyrazolo[4',3':5,6] pyrano[2,3-c] pyrazole-3,5-diamines **4a-g** (Scheme II).

The IR spectra of pyrazolopyranopyrazoles 4 showed the absence of the stretching frequencies of C=O of cyclic lactam, enolic OH and amino group.

The structures of compounds **4a-g** have been established by IR and ¹H NMR spectral data and elemental analysis (**Table II**).

Experimental Section

All the melting points reported are uncorrected. IR spectra were recorded on a Perkin Elmer's Spectrum RXIFT-IR spectrophotometer (v in cm⁻¹); ¹H NMR spectra on a Bruker Avance DPX400 spectrometer using pyridine- d_5 as a solvent and TMS as an internal standard (chemical shifts in δ , ppm); and UV-Vis spectra in ethanol using Shimadzu, Carry 50 (λ in nm). Elemental analyses were preformed on Perkin-Elmer 2400, series II micro-analyzer. Ethyl 4,4,4trifluoroacetoacetate and 3-amino-1-phenyl-2pyrazolin-5-one were Aldrich products and were used without any further purification.

Synthesis of 1-phenyl-3-trifluoromethyl-2pyrazolin-5-one¹⁷ 1. A mixture of ethyl 4,4,4trifluoroacetoacetate (9.2 g, 0.05 mole) and phenylhydrazine (4.5 g, 0.055 mole) was heated under air condenser in an oil-bath at 150-60°C for 3 hr, then cooled and triturated with diethyl ether (20 mL). The ether was removed by filteration and the solid residue was crystallized from ethanol to give 1-phenyl-3trifluoromethyl-2-pyrazolin-5-one **1** (10.13 g, 89 %) as white crystals, m.p. 200°C; FTIR: 1676 (C=O cyclic lactam), 3065 (CH aromatics) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 3.73 (s, 1H, C₄-H), 5.89 (s, 1H, C₄-H), 7.37-7.82 (m, 5H, Ar-H); Anal. Calcd for C₁₀H₇N₂OF₃: C, 52.62 ; H, 3.09; N, 12.28. Found: C, 52.53 ; H, 3.04; N, 12.17 %.

Synthesis of 4-arylidene-1-phenyl-3-trifluoromethyl-2-pyrazolin-5-ones 3a-i. A mixture of 1 (2.28 g, 0.01 mole) and aromatic aldehydes (0.012 mole) was heated in an oil-bath at 160-70 °C for 4 hr, cooled, triturated with ether (20 mL) and filtered off. The coloured residues were crystallized from the proper solvents to get the corresponding, 4-arylidene-1-phenyl-3-trifluoromethyl-2-pyrazolin-5-ones **3a-i** as coloured crystals. The characterization data of arylidenepyrazolones **3** are listed in **Table I**.

Synthesis of 4-aryl-N,N'-diarylidene-1,7-diphenyl-1*H*,4*H*,7*H*-pyrazolo[4',3':5,6]- pyrano[2,3-c] pyrazole-3,5-diamine 4a-g. A mixture of 2 (1.75 g, 0.01 mole) and aromatic aldehydes (0.032 mole) was heated in an oil-bath at 160-70°C for 4 hr, cooled, triturated with ether (20 mL) and filtered off. The solid products were crystallized from suitable solvents to give the corresponding 4a-g. The characterization data of pyrazolopyranopyrazoles 4a-g are listed in Table II.

References

- 1 Scheibye S, El-Barbary A A, Lawesson S O, Fritz H & Rihs G, *Tetrahedron*, 38, **1982**, 3753.
- 2 Weissberger A, Wiley R H & Wiley P, in The Chemistry of Heterocyclic Compounds: Pyrazolinones, pyrazolidones and derivatives, (John Wiley, New York), 1964.
- 3 Hiremith S P, Rudresh K & Saundan A R, *Indian J Chem*, 41B, **2002**, 394.
- 4 Joerg S, Reinhold G, Otto S, Joachim S H, Robert S & Klaus L, *Ger Offen*, 04 Feb. **1988**; DE 3, 625, 686 (Cl C07D 231/22); *Chem Abstr*, 108, **1988**, 167465.
- 5 Dhol P N, Achary T E & Nayak A, *J Indian Chem Soc*, 52, **1975**, 1196.
- 6 Souza F R, Souaza V T, Ratzlaff V, Borges L P, Olivera M R, Bonacorso H G, Zanatta N, Martina M A & Mello C F, *Eur J Pharma*, 451(2), 2002, 141.
- 7 Singh J & Tripathy R, PCT Int Appl, 2001, 138.
- 8 Karci F & Ertan N, Dyes Pigments, 55, 2002, 99.
- 9 Ho Y W, Dyes Pigments, 64, 2005, 223.
- Ishihara; Japan Kokai Tokkyo Koho, 81, 127, 360 (Cl CO7D 231/20),06Oct. 1981, Appl. 80/29, 11 May, 1980, 829.
- 11 Pathak R B & Bahel S C, *J Indian Chem Soc*, 57, 1980, 1108.
- 12 Sammour A, Zimaity A & El-Borai T, J Prakt Chim, 314, 1972, 612.
- 13 Wrzeciono U & Jobke E, *Acta Pol Pharm*, 36, **1978**, 264, 629.
- 14 Wariishi K, Japan Kokai Tokkyo Koho, JP 08 20, 582 96 20, 582; Chem Abstr, 124, 1996, 317154k.
- 15 Ubeda T & Akama Y, Chem Phys Lett, 222, 1994, 559.
- 16 Li-Jiau H, Sheng-Chu K & HanTch L, Taiwan Yao Hsuch Tsa Chih, 31, 1979, 47; Chem Abstr, 93, 1980, 71631.
- 17 Destevens G, Halamandaris A, Wenk P & Dorfman L, *J Am Chem Soc*, 81, **1959**, 6292.

Scheme I

Scheme II

Compd	Mol. Formula	m.p., °C (Colour)	Solvent of crystallization - (yield %)	Calcd (Found) %			UV-Vis	¹ H NMR in CDCl ₃
	(Mol. wt)			С	Н	Ν	in ethanol $(\lambda \text{ in nm})$	(δ, ppm)
3a	$C_{17}H_{10}BrF_3N_2O$	157-59	B + P.E	51.67	2.55	7.09		7.12-8.04 (m, 10H, 9×Ar-H, C ₄ -CH)
	(395.17)	(yellow)	(94)	(51.58	2.50	6.96)		
3b	C ₁₇ H ₁₀ ClF ₃ N ₂ O	166-67	P.E. 60-80	58.22	2.87	7.99		7.19-8.51 (m, 10H, 9× Ar-H, C ₄ -CH)
	(350.72)	(orange)	(89)	(58.11	2.83	7.85)		
3c	C ₁₇ H ₁₀ ClF ₃ N ₂ O	245-46	Acetic acid	58.22	2.87	7.99		7.16-7.98 (m, 10H, 9×Ar-H, C ₄ -CH)
	(350.72)	(yellow)	(77)	(58.14	2.85	7.82)		
3d	$C_{17}H_{11}F_3N_2O_2$	222	Ethanol	61.45	3.34	8.43	395	7.37-8.02 (m, 10H, 9×Ar-H, C ₄ -CH
	(332.28)	(orange)	(85)	(61.27	3.26	8.33)		17.56 (s, 1H, OH)
3e	$C_{18}H_{13}F_{3}N_{2}O_{2}$	128-30	Ethanol	62.43	3.78	8.09	375	3.94 (s, 3H, OCH ₃), 7.03-8.69 (m, 10H
	(346.30)	(orange)	(91)	(62.25	3.67	7.88)		$9 \times \text{Ar-H}, \text{C}_4 \text{-CH})$
3f	$C_{19}H_{15}F_{3}N_{2}O_{3}$	192	Ethanol	60.64	4.02	7.44	405	3.93 (s, 3H, OCH ₃), 3.94 (s, 3H, OCH ₃)
	(376.33)	(orange)	(93)	(60.49	3.98	7.27)		6.43-9.54 (m, 9H, 8×Ar-H, C ₄ -CH)
3g	$C_{18}H_{11}F_3N_2O_3$	204-05	THF	60.01	3.08	7.78	405	6.12 (s, 2H, O ₂ CH ₂), 6.94-7.91 (m, 8H
_	(360.29)	(orange)	(93)	(59.77	3.01	7.69)		Ar-H), 8.70 (s, 1H, C ₄ -CH)
3h	$C_{19}H_{16}F_{3}N_{3}O$	185-87	Ethanol	63.51	4.49	11.69	380	3.15 (s, 6H, 2CH ₃), 6.85-7.93 (m, 9H
	(359.35)	(red)	(93)	(63.42	4.38	11.56)		Ar-H), 8.56 (s, 1H, C ₄ -CH)
3i	$C_{21}H_{13}F_3N_2O_2$	223	Ethanol	65.97	3.43	7.33	395	7.03-8.02 (m, 12H, 11×Ar-H, C ₄ -CH
	(382.34)	(yellow)	(65)	(65.81	3.40	7.23)		17.56 (s, 1H, OH)

			Table II—T	he characte	rization da	ata of com	pounds 4a-g	
Compd	Mol. Formula (Mol. wt)	m.p., °C (Colour)	Solvent of crystallization (vield %)	Calcd (Found) % C H N			¹ H NMR in CDCl ₃ (δ, ppm)	
4 a	C ₃₉ H ₂₈ N ₆ O (596.70)	204-06 (white)	Methanol (61)	78.50 (78.35	4.73 4.69	14.08 13.94)	5.37 (s, 1H, C ₄ -H), 6.99-7.75 (m, 27H, 25×Ar-H, 2×N=CH)	
4b	C ₃₉ H ₂₅ Br ₃ N ₆ O (833.39)	239-41 (white)	Methanol (59)	56.21 (56.09	3.02 2.98	10.08 9.95)	5.29 (s, 1H, C ₄ -H), 7.08-7.79 (m, 24H, 22×Ar-H, 2×N=CH)	
4 c	C ₃₉ H ₂₅ Cl ₃ N ₆ O (700.03)	233-35 (white)	Methanol (57)	66.92 (66.75	3.60 3.52	12.01 11.86)	5.34 (s, 1H, C ₄ -H), 7.09-7.50 (m, 24H, 22×Ar-H, 2×N=CH)	
4d	C ₃₉ H ₂₅ Cl ₃ N ₆ O (700.03)	214-16 (white)	Ethanol (58)	66.92 (66.81	3.60 3.53	12.01 11.95)	5.47 (s, 1H, C ₄ -H), 7.10-7.63 (m, 24H, 22×Ar-H, 2×N=CH)	
4 e	$\begin{array}{c} C_{42}H_{34}N_6O_4\\ (686.78)\end{array}$	244-46 (white)	Benzene (56)	73.45 (73.28	4.99 4.97	12.24 12.10)	3.66 (s, 3H, OCH ₃), 3.68 (s, 3H, OCH ₃), 3.77 (s, 3H, OCH ₃), 5.24 (s, 1H, C ₄ -H), 6.74-7.54 (m, 24H, 22×Ar-H, 2×N=CH)	
4f	$C_{45}H_{40}N_6O_7$ (776.86)	231-33 (white)	Methanol (53)	69.58 (69.46	5.19 5.14	10.82 10.68)	3.50 (s, 6H, 2×OCH ₃), 3.59 (s, 3H, OCH ₃), 3.69 (s, 6H, 2×OCH ₃), 3.78 (s, 3H, OCH ₃), 5.21 (s, 1H, C ₄ -H), 7.03-7.88 (m, 21H, 19×Ar-H, 2× N=CH)	
4g	C ₄₂ H ₂₈ N ₆ O ₇ (728.73)	222-25 (white)	Ethanol (53)	69.23 (69.15	3.87 3.80	11.53 11.36)	5.26 (s, 1H, C ₄ -H), 5.79 (s, 2H, O ₂ CH ₂), 5.88 (s, 2H, O ₂ CH ₂), 5.95 (s, 2H, O ₂ CH ₂), 6.64-7.44 (m, 21H, 19×Ar-H, 2× N=CH)	