Effect of Some Growth Regulators on Growth, Flowering, Seed Yield and Total Alkaloids Content of Atropa Belladonna

B.M. Mansour, N.M. Toaima, M. El-F. Zeawail and 'I.S. Amin
Faculty of Agriculture, Al-Azhar University,
Desert Institute, Cairo, United Arab of Egypt

Abstract

Atropa belladunna is an important plant for its medicinal uses. The medicinal effect is mainly due to atropinc, Hyoscyamine and scopolamine content are found in leaves, roots and ripe berries. Several growth regulators treatments on growth, flowering, seed yield and total atkaloids content of belladonna plants were carried out. Results showed that 400 ppm IAA was the most effective treatment for producing the highest plants. largest leaf number/plant. heaviest vegetative growth, largest number of flowers/plant, highest seed yicld/plamt and the highest total alkaloids content in leaves, stem, roots and ripe berries. Cycocel at 4000 ppm was the most effective dose for inducing carly flowering, producing the highest numher of branches/plant and the heaviest roots weight/plant. Taller plants ($47-52 \mathrm{~cm}$) were produced when the plants were sprayed with 200 $\mathrm{ppm} \mathrm{GA}{ }_{3}$ compared to other treatments.

Introduction

Atropa belladona L., family Solanaceae is considered a very important medicinal plant for producing alkaloids which are used for various medical purposes. Ideal plant has a thick, fleshy root and a stout erect stem, simple at the base and branched above 1 to 1.5 meters height. The flowers are growing from the leaf axils. The fruit is a berry rather like a small cherry. The drugs are produced from the root and leaves (Baily 1947).

Many workers used growth regulators such as GA_{3}, IAA and CCC to influence the growth, flowering, secd yield and active ingredients of ornamental and medicinal plants. Positive effects were obtained in the aforementioned characters when IAA or

GA $_{3}$ were applied (Lang 1959, on Hyoscyamus nigra, Sinha and Varma 1970, on Datura innoxia, Rafaeel 1976, on Hyoscyamus muticus, El-Tabbakh et al. 1982, on Helianthus annus and Mahmoud 1987, on some saponin containing plants). On the other hand, few studies indicated a negative effect on active ingredients content by using GA_{3} spray (Sciuchetti 1964, on Datura stramonium and Ahmed and Malik 1965, on Hyoscyamus muticus). In addition, CCC induced more branches, reduce plant height, enhanced or delayed flowering, increased seed yield and active ingredients content/plant (Jasa et al. 1972, on Salvia splendens, Rafaeel 1976, on Hyoscyamus muticus and Kater 1982, on Cyamopsis tetragonoloba).

The present work aimed to study the effect of some growth regulator treatments on growth, flowering, and active ingredients in belladonna growth. The most effective treatments that would allow to get the best results of the above mentioned aspects were also investigated.

Material and Methods

This experiment was conducted at the Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, in two successive seasons 1985/ 1986 and 1986/1987. The work was intended to study the effect of GA ${ }_{3}$, IAA and CCC on growth, seed yield and total alkaloids in different plant organs.

Mature seeds of belladonna plants were carefully sown on October $15 t h$ in shallow pots. Seedlings were then transferred individually into 8 cm clay pots. When the seedlings became strong, adapted for cultivation and formed complete 8 leaves, they were transplanted individually in 30 cm clay pots which filled with equal and homogeneous amount of Nile silt and arranged in plots of three replicates. The plants were irrigated every 3 days in the summer months and every 5 days in the winter months and were fertilized at the rate of 3 gm ammomium nitrate and 2 gm super phosphate per pot (90 kg N and $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ per feddan, Black 1957). The fertilizers were divided into two equal amounts. The first dose was added 15 days after transplanting, whereas the second was given after one month later. Plants were treated as follows :
A. Gibberellic Acid ($\mathbf{G A}_{3}$) Treatments: Five concentrations of $\mathrm{GA}_{3} 0,50,100,150$ and 200 ppm were prepared and sprayed on the plants in two spraying dates; the application first was one month after transplanting in 30 cm clay pots and the second was done one month later.
B. Indole Acetic Acid (IAA) Treatments: Plants were sprayed twice with aqueous solution of IAA at concentration of $0,50,100,200$ and 400 ppm . The time of applications was similar to that of GA_{3}.
C. Cycocel (CCC) Treatments : Plants were sprayed twice with aqueous solution of CCC at concentrations of $0,500,1000,2000$ and 4000 ppm . The time of applications was similar to that of GA_{3}.

The following data were recorded :
a. Vegetative growth : Vegetative growth data were recorded at three developmental stages: a) At plant 170 days old; b) at the beginning of the flowering stage; and c) at ripe berries stage. Such data were as follows: 1) Plant height in cms; 2) Number of leaves per plant; 3) Number of branches per plant; 4) Dry weight of aerial growth in gms; and 5) Dry weight of roots in gms.
b. Flowering Data : Such data included 1) Flowering date: considered as the number of days from sowing to the opening of the first flower. 2) Flowering duration: as the whole period of flowering from the appearance of the first flower until plants ceased flowering.
c. Seed Production. Seeds weight per plant (gm) was also recorded.
d. Chemical Analysis. Total alkaloids content in stems, leaves and root were determined at the three developmental stages, as suggested by Sangster (1960) using the standard curve of Atropine.

Treatments means were separated for significant statistical differences by the mean of the Least Significant Difference (LSD) test at 5% level according to Snedecor (1956).

Results and Discussion

Effect of GA, IAA and CCC on Atropa Belladonna Plants

1. Effect on plant growth

1.1 Plant Height and Leaf Number/Plant : A constant increase in plant height and leaf number were found due to the advance in plant age till the berry ripening stage (Table 1). This trend was holding true with the three growth regulators at the different stages of plant growth.

Concerning the effect of different GA_{3} concentration of plant height and leaf number, data in Table 1 indicated that $200 \mathrm{ppm} \mathrm{GA}_{3}$ produced significantly taller plants with large leaf number/plant. These results may be due to stem elongation through the elongation of internodes by both cell division and cell elongation caused by GA_{3} application as demonstrated by Krishnamoorthy (1981).

On the other hand, spraying IAA at different concentration for the two times increased plant height and leaves number of belladonna plants especially at the highest concentration (400 ppm).

Regarding the effect of spraying CCC, it was evident from the data in Table 1 that a gradual decrease was observed in plant height and number of leaves with the increasing of CCC concentration up to 4000 ppm . The site of such action for CCC is probably due to the inhibition of cell division of subapical meristem (Krishnamoorthy 1981). These results are in accordance with those of Sciuchetti and Born (1965) on Datura tatula and Sinha and Varma (1970-1974) on Datura innoxia.
1.2 Number of Branches/Plant : The best results for number of branches were obtained at ripe berries stage by using $4000 \mathrm{ppm} \mathrm{CCC}, 400 \mathrm{ppm}$ IAA or 200 ppm GA 3

Table 1. Effect of GA_{3}, IAA and CCC concentrations sprayed twice on plant height (cms) and number of leaves per plant in Atropa belladoma plants during 1985/1986 and 1986/1987 seasons.

Treament	Character	First season of 1985/86						Second season of 1986/87						
		Plant height (cms)			Numberoilcaves/plant			Plantheight (cms)			Numberofleaves/plani			
		${ }^{*}$ Stages			Stages			Stages			Stages			
		s_{1}	s_{2}	s_{3}	s	s	s_{3}	s_{1}	s_{2}	${ }_{3}$	5	s_{2}	s_{3}	
Control		15.9	30.0	43.5	12.3	36.7	54.0	19.9	40.8	51.3	12.0	39.0	51.7	
GA_{3}	50 ppm	14.6	39.2	48.9	12.7	15.3	63.3	18.9	48.9	54.8	12.7	45.7	62.7	
	1001 ppm	13.7	46.0	57.6	11.7	61.3	77.0	19.6	53.0	59.7	12.0	64.3	76.0	
	150 ppm	14.6	50.1	62.0	11.7	68.0	85.7	21.9	58.2	63.7	11.7	68.3	88.7	
	200 ppm	13.7	58.1	69.1	12.0	80.0	96.0	19.9	65.9	72.0	12.7	79.7	94.3	
$1 A N$	50 ppis	15.4	29.9	41.5	13.3	52.7	75.3	21.4	35.4	48.2	112.0	57.7	71.7	
	100 ppm	14.5	32.3	47.1	11.7	55.7	82.0	19.7	40.7	51.0	11.7	60.7	79.7	
	200 ррпо	14.9	36.1	48.3	123	64. 7	86.7	20.8	41.8	54.0	11.3	67.7	86.11	
	400 ppm	16.3	43.8	52.5	13.3	69.3	91.0	18.9	45.8	57.7	11.7	76.7	43.7	
CCO	500 ppm	14.4	28.3	43.0	13.3	77.3	95.0	21.8	39.0	51.7	11.7	87.3	91.7	
	1000 pprt	17.9	26.3	35.8	13.7	66.11	76.7	20.2	35.8	48.8	12.11	58.0	72.3	
	2000 ppm	15.1	24.6	33.9	12.7	54.3	71.7	$21 . .3$	33.9	45.9	11.3	53.7	6-5.7	
	4000 ppm	16.1	23.3	31.7	12.11	65.3	57.3	20.4	31.7	38.1	12.7	47.11	的 0	
1..S.D		5\%			5\%			5\%			5\%			
For GA_{5} : Concent. Age		$\begin{aligned} & 2.2 \\ & 3.8 \end{aligned}$			$\begin{array}{r} 9.7 \\ 16.7 \end{array}$			$\begin{aligned} & 3.8 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 161.9 \\ & 18.8 \end{aligned}$			
For IAA : Concent. Age		$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$			$\begin{array}{r} 7.7 \\ 13.3 \end{array}$			$\begin{aligned} & 2.2 \\ & 3.9 \end{aligned}$			$\begin{aligned} & 12.8 \\ & 22.1 \end{aligned}$			
For CCC : Concent. Ag		$\begin{aligned} & 2.1 \\ & 3.6 \end{aligned}$			$\begin{aligned} & 9.7 \\ & 16.8 \end{aligned}$			$\begin{aligned} & 1.9 \\ & 3.3 \end{aligned}$			$\begin{aligned} & 16.5 \\ & 26.6 \end{aligned}$			

"Stages: Before application $\left(\mathrm{S}_{1}\right)$, at the beginning of flowering $\left(\mathrm{S}_{2}\right)$ and at ripe berries $\left(\mathrm{S}_{3}\right)$.
(Table 2). The differences within concentrations at each of the three growth regulators were found significant. These findings were in harmony with the results obtained by El-Sherbeny (1973) in Datura metel and Sinha and Varma (1974) on Datura innoxia.
1.3 Dry Weights of Aerial Growth and Roots/Plant : The yields of dry weight of plant herb and roots were greatly influenced by growth regulators treatments (Table $3)$.

Concerning the effect of spraying GA_{3} and IAA at different concentrations on dry weight of plant herb, data showed that dry weight increased constantly with increas-

TABLE 2. Effect of GA_{3}. IAA and CCC concentrations sprayed for two times, on the number of branches/plant in Alropa belladonna plants for the two scasons of 1985/86 and 1986/87.

ing the concentrations of either GA_{3} or IAA. IAA concentrations gave good results specially when 400 ppm IAA was used. Meanwhile, the results of dry weight of herb decreased by increasing CCC concentrations. On the other hand, data recorded for the dry weights of roots of the treated plants showed that dry weight of roots/plant increased with increasing the concentrations of growth regulators. At ripe stage the best results were obtained by using CCC followed by IAA and GA_{3}. These results are in agreement with Rofaeel (1976) on Hyoscyamus muticus and Sinha and Varma (1974) on Datura innoxia.

2. The Effect on Flowering (Date and Period)

Plants treated with GA_{3} and CCC in different concentrations started flowering earlier, but the flowering period was reduced by about (2-7 days) for GA_{3} and about (4-13 days) for CCC respectively; flowering was earlier by increasing the concentra-

Table 3. Effect of GA_{3}. IAA and CCC concentrations sprayed for two times, on the dry weight of aerial growth and roots/plants (gms) in Atropa belladoma plants for the two seasons of 1985/1986 and 1986/1987.

Tratment	Character	First season of 1985/86						Second seasun of 1986/87					
		Acrialgrowth (gms)			Roots (gms)			Aerialgrowith (gnis)			Roots (gns)		
		${ }^{*}$ Stages			Stages			Stages			Stages		
		s_{1}	5_{2}	5_{3}	s_{1}	5 ?	s_{3}	51	5	s_{3}	s_{1}	s_{2}	s_{3}
Control		1.5	8.3	19.7	0.3	8.2	12.0	2.2	10.8	20.6	0.4	8.0	12.3
GA_{3}	50 ppm 100 ppm 150 ppm 200 ppos	$\begin{aligned} & 1.7 \\ & 1.6 \\ & 1.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.4 \\ & 15.1 \\ & 20.7 \end{aligned}$	$\begin{aligned} & 22.7 \\ & 31.3 \\ & 37.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 9.3 \\ & 0.3 \\ & 0.4 \end{aligned}$	$\begin{gathered} 9.3 \\ 9.5 \\ 11.8 \\ 13.8 \end{gathered}$	$\begin{aligned} & 13.7 \\ & 14.7 \\ & 16.7 \\ & 19.7 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.1 \\ & 1.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 14.3 \\ & 17.7 \\ & 20.7 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 31.0 \\ & 41.7 \\ & 46.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{array}{r} 9.8 \\ 9.9 \\ 12.8 \\ 14.2 \end{array}$	$\begin{aligned} & 13.0 \\ & 14.3 \\ & 17.3 \\ & 22.3 \end{aligned}$
IAA	50 ppm 100) ppm 2000 ppros 400 ppm	$\begin{aligned} & 1.9 \\ & 1.8 \\ & 1.7 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 16.2 \\ & 19.4 \\ & 19.8 \end{aligned}$	$\begin{aligned} & 29.7 \\ & 33.3 \\ & 43.0 \\ & 54.3 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 11.6 \\ & 13.3 \\ & 14.1 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 14.3 \\ & 16.3 \\ & 21.7 \\ & 24.7 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.2 \\ & 2.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 17.0 \\ & 19.3 \\ & 19.7 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 38.0 \\ & 47.0 \\ & 55.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \\ & 0.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.8 \\ & 15.3 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 14.3 \\ & 21.3 \\ & 26.3 \\ & 28.3 \end{aligned}$
CCC	$5(0) \mathrm{ppm}$ 1000 ppm 2000 ppm 4000 ppm	$\begin{aligned} & 1.8 \\ & 2.2 \\ & 1.9 \\ & 2.0 \end{aligned}$	$\left\{\begin{array}{r} 23.8 \\ 15.5 \\ 14.3 \\ 4.5 \end{array}\right.$	$\begin{aligned} & 4.0 \\ & 33.7 \\ & 30.3 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 1.5 \\ & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 15.7 \\ & 16.1 \\ & 17.3 \\ & 18.4 \end{aligned}$	$\begin{aligned} & 22.11 \\ & 25.0 \\ & 28.3 \\ & 35.3 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.2 \\ & 2.3 \\ & 1.9 \end{aligned}$	$\begin{array}{\|l} 18.9 \\ 15.0 \\ 14.2 \\ 10.0 \end{array}$	$\begin{gathered} 32.7 \\ 31.3 \\ 25.11 \\ 19.7 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.4 \\ & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 14.1 \\ & 15.4 \\ & 19.5 \end{aligned}$	$\begin{gathered} 20.7 \\ 24.3 \\ 27.7 \\ 39.3 \end{gathered}$
L.S.D.		0.05			0.05			0.05			0.05		
For GA_{3} : Concent. Age		$\begin{aligned} & 2.5 \\ & 4.3 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.6 \end{aligned}$			$\begin{aligned} & 4.6 \\ & 7.9 \end{aligned}$			$\begin{aligned} & 1.8 \\ & 3.2 \end{aligned}$		
For IAA : Concent. Agc		2.44.1			$\begin{aligned} & 1.0 \\ & 1.7 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 4.3 \end{aligned}$			3.0		
For CCC : Concent. Age		2.23.8			1.730			2.9					

'Stages: Before application $\left(\mathrm{S}_{1}\right)$, at the begimuing of flowering $\left(\mathrm{S}_{2}\right)$ and at ripe berries $\left(\mathrm{S}_{3}\right)$.
tions in both growth regulators (Table 4). Meanwhile IAA concentrations extended the flowering period by about (i-7 days) compared with the untreated plants. The mode of action of IAA on flowering could be explained by its mediating role through the formation of ethylene according to the findings of Krishnamoorthy (1981); Jase et al. (1972) on Salvia splendens and Mahmoud (1987) on mullein plants confirmed the above mentioned results.

3. Effect on Seed Yield

$\mathrm{GA}_{3}(50 \mathrm{ppm})$ was the most suitable concentration for producing a significant yield of seeds per plant (Table 4). Regarding CCC treatments, 500 ppm CCC produced

TABLE 4. Effect of GA ${ }_{3}$, IAA and CCC concentrations sprayed for two times, on number of days to lsf flower appearance (days), flowering period (days) and seed yicld/plant (gms) in Alropa belladonna plants for the two seasons of 1985/86 and $1986 / 87$.

Treatment	Character	First season of 1985/86			Second season of 1986/87		
		First flower appearance (days)	Flowering period (days)	Seed yield/ plant (gms)	First flower appearance (days)	Flowering period (days)	Sced yield/ plant (gms)
Control		212.7	67.3	6.2	211.3	66.0	8.0
GA	50 ppm 100 ppm 150 ppm 2(\%) ppm	$\begin{aligned} & 21010 \\ & 208.3 \\ & 205.3 \\ & 243.0 \end{aligned}$	$\begin{aligned} & 65.7 \\ & 62.7 \\ & 61.7 \\ & 60.3 \end{aligned}$	$\begin{array}{r} 13.0 \\ 10.0 \\ 7.7 \\ 4.2 \end{array}$	$\begin{aligned} & 209.0 \\ & 207.0 \\ & 204.7 \\ & 203.0 \end{aligned}$	$\begin{gathered} 64.0 \\ 61.0 \\ 58.3 \\ 57.0 \end{gathered}$	$\begin{array}{r} 14.4 \\ 12.5 \\ 9.5 \\ 5.2 \end{array}$
IAA	50 ррпи 100 ppm 200 ppm 401 ppm	$\begin{aligned} & 215.0 \\ & 217.3 \\ & 218.3 \\ & 212.0 \end{aligned}$	$\begin{aligned} & 68.3 \\ & 72.2 \\ & 74.0 \\ & 74.7 \end{aligned}$	$\begin{array}{r} 7.5 \\ 8.2 \\ 11.5 \\ 13.8 \end{array}$	$\begin{gathered} 213.0 \\ 214.7 \\ 215.3 \\ 219.0 \end{gathered}$	$\begin{aligned} & 67.0 \\ & 71.3 \\ & 71.7 \\ & 72.0 \end{aligned}$	$\begin{aligned} & 10.9 \\ & 11.5 \\ & 15.0 \\ & 15.8 \end{aligned}$
CCO	500 ppm 1000 pprr 2000 pprn 4000 ppm	$\begin{aligned} & 2100.7 \\ & 209.0 \\ & 205.3 \\ & 2000.7 \end{aligned}$	$\begin{aligned} & 63.3 \\ & 60.0 \\ & 57.3 \\ & 54.7 \end{aligned}$	$\begin{array}{r} 10.2 \\ 7.7 \\ 6.8 \\ 5.7 \end{array}$	$\begin{aligned} & 208.3 \\ & 2017.3 \\ & 203.3 \\ & 200.0 \end{aligned}$	$\begin{aligned} & 61.0 \\ & 58.7 \\ & 55.3 \\ & 53.7 \end{aligned}$	$\begin{array}{r} 10.5 \\ 9.5 \\ 9.2 \\ 7.7 \end{array}$
L.S.D.		0.05	0.05	0,05	0.05	0.05	0.05
For GA_{5} Concent.		3.0	3.4	2.5	2.9	2.7	5.3
For IAA: Concent.		7.0	2.9	2.8	6.6	2.3	4.2
For CCC Concent.		2.9	2.9	1.1	3.8	2.4	n.s.

higher seed yield compared to other CCC concentrations. Concerning the effect of IAA, it was obvious that seed yield per plant increased significantly by increasing lAA concentration up to 400 ppm .

4. The Effect on the Active Ingredients Content

4.1 Percentage of Total Alkaloids Content in Leaves and Stems

There were a gradual increase in the percentage of total alkaloids in leaves and stems took place with increasing plant age (Table 5). This increase reached its maximum at the beginning of the flowering stage, but the total alkaloids decreased again in leaves and stems till the end of the plant life. The decrease in total alkaloids might be due to the decrease in the rapid reduction in the plant metabolic activities during the last stage of growth as concluded by Tedder et al. (1970). The same trend holds true for three growth regulators.

TABLE 5. Effect of GA_{3}. IAA and CCC concentrations spratyed for two times, on percentage of total alkaloids content in the leaves and stems in Atropa belladonna plants for the two scasons of 1985/ 1986 and $1986 / 1987$.

Treatment	Character	First season of 1985/86						Second scason of 1986/87					
		Total alkaloids (\%)						Totalalkaloids (\%)					
		L.caves			Stemis			Leaves			Stems		
		*Stages			Stages			Stages			Stages		
		s_{1}	s_{2}	5	s	5^{5}	s_{i}	s_{1}	S_{2}	s_{i}	s_{1}	$\stackrel{s}{ }$	s_{3}
Control		0.130	0.395	0363	0.110	0.238	0.143	0.133	0.391	11.357	0.113	0.234	0.138
GiA_{3}	50) ppm	0.120	0.356	0.323	0.105	0.312	0.125	0.128	0.348	0.318	11.112	11.207	11.123
	100 ppm	0.127	0.323	0.297	0.107	0.184	0.101	0.123	0.317	0.2\%	11.113	0.179	0.097
	150 ppm	0.125	0.281	0.262	0. 1109	0.151	0.082	0.130	0.280	0.257	0.117	0.145	0.077
	200 ppm	0.129	0.251	0.225	0.1117	0.133	0.053	0.125	0.247	0219	0.115	0.125	0.050
IAA	50 ppm	0.122	0.398	0.364	0.106	0.250	0.163	0.132	0.398	0.364	11.114	0.241	0.160
	100 ppm	0.125	0.450	0.383	0.108	0.278	0.194	0.130	0.443	0.378	0.112	0.277	0.190
	200 ppin	0.129	0.515	0.427	(1) 105	0.307	0.242	0.125	0.505	0.422	0.116	11.300	(1.24)
	400 ppm	0.127	0.553	10.475	0.109	0.353	0.299	0.122	0.549	(1).473	0.110	Li. 345	0.294
CCO	500 ppm	0.123	0.397	0.396	0.110	0.245	0.150	0.129	0.39-1	03.359	0.113	0.242	(1.147
	10 (1i) ppron	0.124	0.438	11.373	0.107	0.263	0.187	0.125	0.423	0.369	0.117	0.259	0.183
	2000 ppmo	0.128	0.487	0.414	0.108	0.299	0.238	0.128	0.482	0.401	0.118	0.290	0.230
	4000 ppm	0.123	0513	0.467	0.105	0.230	0.259	0.130	0.501	0.4511	0.112	0.313	(1.249

* Stages: Bufore application (S_{1}), at the begirming of flowering $\left(S_{2}\right)$ and at ripe berries $\left(S_{3}\right)$.

The total alkaloids content in the leaves and stems was increased proportional to the increase of IAA doses from 50 to 400 ppm and of CCC doses from 500 to 4000 respectively. On the other hand, there was a clear reduction in total alkaloids content in leaves and stems as a result of GA_{3} treatment; th is reduction was increased with increasing GA_{3} concentrations.

In general, 400 ppm IAA was the most effective dose for producing the highest total alkaloids content in leaves and stems for all three growth regulators concentrations used. These results were in agreement with those of Sciuhetti and Born (1965) on Datura tatula; Shah and Saojc (1968) on Datura metel and Rofaeel (1976) on Hyoscyamus mulicus.
4.2 Percentage of Total Alkaloids Content in Roots: Total alkaloids content in roots increased as the plant age advanced till the beginning of flowering stage, then decreased again till the end of plant life (Table 6). This decrease in total alkaloids might be due to the decrease in the rapid reduction in the plant metabolic activities during the last stage of growth as explained by Tedder et al. (1970).

Roots alkaloids percentage negatively responded to the increase of GA_{3} or CCC concentrations (Table 6). It decreased gradually by increasing GA_{3} or CCC doses, whereas total alkaloids content in roots increased constantly with the increase of

TABLE 6. Effect of GA_{3}. IAA and CCC concentrations sprayed for two times, on percentage of total alkaloids content in the root and ripe berries in Atropa belladonna plants for the two seasons of 1985/86 and 1986/87.

Truatment	Stages	Firstscason of 1985/86				Second season of 1986/87			
		Before application un (plants) 17(0)daysold)	At the begiming of flowering (\%)	At ripe berries (\%)	Total alkaloids in ripe berries (\%)	Before application on(plants 17(days old)	At the beginning of flowering (\%)	Al ripe berries (\%)	Total alkaloids in ripe berries (\%)
Conirol		0.113	0.167	(0.148	0.240	0.113	0.170	0.135	0.237
GA:	50 ppm I(0) ppm 1.50 ppm 200 ppm	$\begin{aligned} & 0.110 \\ & 0.107 \\ & 0.103 \\ & 0.109 \end{aligned}$	$\begin{aligned} & 0.160 \\ & 0.143 \\ & 0.121 \\ & 0.108 \end{aligned}$	$\begin{aligned} & 0.143 \\ & 0.125 \\ & 0.107 \\ & 11.075 \end{aligned}$	$\begin{aligned} & 1.223 \\ & 0.207 \\ & 0.186 \\ & 0.153 \end{aligned}$	$\begin{aligned} & 0.110 \\ & 0.108 \\ & 0.115 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.158 \\ & 0.132 \\ & 0.110 \\ & 0.081 \end{aligned}$	$\begin{aligned} & 0.122 \\ & 0.104 \\ & 0.083 \\ & 0.065 \end{aligned}$	$\begin{aligned} & 0.218 \\ & 0.2010 \\ & 01.183 \\ & 0.148 \end{aligned}$
IAA	$5(1) \mathrm{ppm}$ 1000 pym 200 ppm 400 ppin	$\begin{aligned} & 0.108 \\ & 1.1105 \\ & 0.1107 \\ & 0.109 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.219 \\ & 0.273 \\ & 0.310 \end{aligned}$	$\begin{aligned} & 0.153 \\ & 0.168 \\ & 0.181 \\ & 0.217 \end{aligned}$	$\begin{aligned} & 0.246 \\ & 0.275 \\ & 0.340 \\ & 0.385 \end{aligned}$	$\begin{aligned} & 0.1115 \\ & 0.107 \\ & 0.103 \\ & 0.109 \end{aligned}$	$\begin{aligned} & 0.189 \\ & 0.223 \\ & 0.286 \\ & 0.320 \end{aligned}$	$\begin{aligned} & 0.143 \\ & 0.158 \\ & 0.179 \\ & 0.215 \end{aligned}$	$\begin{aligned} & 0.240 \\ & 0.269 \\ & 0.339 \\ & 0.379 \end{aligned}$
CCC	500 ppm 1000 ррпл 2000 ppm 4000 ppm	$\begin{aligned} & 0.1108 \\ & 10.106 \\ & 0.107 \\ & 0.110 \end{aligned}$	$\begin{aligned} & 0.157 \\ & 0.133 \\ & 0.112 \\ & 0.1997 \end{aligned}$	$\begin{aligned} & 0.133 \\ & 0.120 \\ & 0.101 \\ & 0.101 \\ & 0.073 \end{aligned}$	$\begin{aligned} & 0.240 \\ & 0.264 \\ & 0.314 \\ & 0.342 \end{aligned}$	$\begin{aligned} & 0.110 \\ & 0.107 \\ & 0.107 \\ & 0.113 \end{aligned}$	$\begin{aligned} & 0.145 \\ & 0.129 \\ & 0.161 \\ & 0.070 \end{aligned}$	$\begin{aligned} & 0.120 \\ & 0.100 \\ & 0.075 \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.243 \\ & 0.260 \\ & 0.303 \\ & 0.338 \end{aligned}$

IAA doses. IAA at 400 ppm gave the highest percentage of total alk aloids content in roots compared to the other growth regulators. Similar results were reported by Sciuchatti and Born (1965) on Datura tatula and Sinha and Varma (1970, 1974) on Datura innoxia.
4.3 Percentage of Total Alkaloids Content in Ripe Berries. Percentage of total alkaloids content in ripe berries responded differently for the three growth regulators (Table 6). It was evident that the percentages increased progressively by increasing doses of IAA and CCC but on the contrary, it decreased gradually by increasing GA concentration. Similar results were recorded by Sinha and Varma (1970) in Datura innoxia.

References

Ahmad, A.J. and Malik, N.A. (1965) Effect of gibberellic on growth and alkaloids in Hyoscyamus muticus. Pakistan J. Sci, Ind. Res. 8 (2),1965 (Chem. Abstr. Vol. 63: 18950).
Baily, L.H. (1947) The Stundard Cyclopedia of Horticulture. New York, the MacMillan. 1, p. 470.
Black, C.A. (1957) Soil-plant Relationship. New York, Sohn Willy and Sons, Inc.
El-Sherbeny, S.S. (1973) Effect on some growth substances on growh and flowering on Datura metel. M.Sc. Thesis, Faculty of Agric., Ain Shams Univ., Egypt.

El-Tabbakh, A.E., El-Habbal, M.S., El-Sayed, S.A. and Tbabet, E. M.S. (1982) Effect of lAA and GA ${ }_{3}$ on growth and yield on Helianthus annuus. Research Bulletin, Ain Shams 1982-1984, Egypt.
Jasa, B., Reznickek, V. and Muzikantova, J. (1972) A study on the use of growth retardant preparation in annuat flowers. Rostilinna vuraba 117 (11/12) 129-1297 (Hort. Abst. 42: 8027).

Kater, R.M. (1982) Sludies of the effect of some growth regulators treatments on growh, yield and chemical contents in Cyamopsis tetragonaloba. Ph.D. Diss. Agric. Al-Azhar Univ., Egypt.
Krishnamoorthy, H.N. (1981) Plant growth substances. Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
Lang, A. (1959) Influence of gibberellin and atuxin on photoperiodic induction. Ptobl. Am. Assoc. Advance. Sci. 55, 329-50. (Chem. Abst. Vol. 55: 282(1).
Mahmoud, S.M. (1987) Effect of some cultural treatments on growh, flowering and saponin contem of some saponin containing plants. Ph.D. Diss. Faculty of Agric., Al-Azhar Univ., Egypt.
Rofaeel, I.S. (1976) Physiological stuclies on Hyoscyamus muticus. Ph.D. Diss. Agric. Ain-Shams Univ., Egypt.
Sangster, A.N. (1960) Determination of alkaloid structures. I. Isolation characterization and physical method. II. Chemical Mchods. J. Chem. Ed. 37 Vol, 54-57. 518-525.
Sciuchetti, L.A. (1964) Effect of various concentrations and frequency of application of gibherellic acid on growth and formation of metabolic products of Datura stramonium. I. Pharn. Sci, 53: 61-9.
Sciuchetti, L.A. and Born, A.E. (1965) Effect of dimethyl sulfoxide alone and combined with N-dimethyl succinamic acid (B995) or 2-chloroethyl trimethyl ammonium chloride (CCC) on the growth and alkaloid biosynthesis of Darura tatula. J, Phamm. Sci., 54; 285-9.
Shah, S.C. and Saoje, A.N. (1968) Effeet of plant hormones on the growth and alkaloidal content in Dat ura metel. Indian J. Pharm. 1968, 30(6): 146-8.
Sinha, A.S. and Varma, K.C. (1970) Influence of gibbercllic acid on growth and alkaboidal content of datura innoria. Indian J. Pharm. 32(2): 40-2 (Hort. Abstr. 42: 2037).

- (1974) Influcnce of indole 3-acctic acid on growth and alkaloidal content of Dahra innoxia. Plant Medica 1974, 26(4): 380-4.
Snedecor, G.W. (I956) Staristical Methods. The Iowa State Univ. Press, 5th Ed. Iowa, USA.
Tedder, J.M., Nechvate-Murray, A.W. and Carduff, J. (1970) Basic organic chemistry. Pot. 4. John Wiley and Sons. London.
 القلويـدات الكليـة لنبات أتـروبا بـادونا

بيومي منصور ، نيبل طيبمة ، عمد الفاتح زويل و إيراهيم أمينّ

 القاهــرة - بهيورية مصر الثربية

 جزء/الكليون.
 جزء/المليون
 جز:1/1/لميون

التزهير ، وعند نضح الثمار وكانت أهم النتائج كايلي :

 مر حملة نضج الثمالر
Y -

الكنتّرول

 والبذور

