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Abstract 
 
This review highlights some of the progresses achieved in modelling spatial variability of hydro-geological parameters using the 
stochastic approach. The reason for this approach is two folds. First, the erratic nature of the hydro-geological parameters observed 
at field data. Second, the uncertainty due to the lack of information about the subsurface structure that is known only at sparse 
sampled locations. In this paper the frequently used techniques for unconditional and conditional stochastic models in porous 
formations have been reviewed. These techniques are the tools to solve stochastic differential equations of flow and transport in 
porous media either analytically or numerically. In the presented techniques, spatial variability of aquifer parameters is modelled 
as stationary correlated random fields. These fields are used as input to the classical differential equations to evaluate the effect of 
spatial variability on flow and transport characteristics. The algorithms used for site characterization and generating heterogeneous 
descriptions of porous formations are reviewed. These algorithms can be divided broadly into discrete facies models, continuous 
models and hybrid models. In discrete facies models, the heterogeneity is described as geometrical shapes of geological units, 
parameter values to which can later be assigned. In continuous models, the heterogeneity is described as random parameters 
governed by joint probability distributions. In hybrid models both continuous and discrete models are used.  
 The Monte-Carlo approach is a powerful tool to estimate uncertainty. It handles realistic situations where the flow is 
controlled by complex boundary conditions in comparison with analytical approaches. It handles the non-linearities of the systems. 
An extensive description of some numerical methods such as multivariate method, nearest neighbour method, and turning bands 
method has been presented in this paper. An evaluation of these methods is summarized in a tabular form (see Table (1)). 
Advantages, disadvantages and limitations of each of these methods are presented. The methods are evaluated on the basis of 
information available in the literature and by application of these methods to some simple characteristic problems. 
 
1. Introduction 
  
Observations of geological media show significant spatial variability at various scales. Geological 
formations contain different features of variability such as faults, fractures, lithologies, horizontal layering, 
inclined bedding, inclusions, lamination and variability of the physical and chemical properties within 
individual units. Field measurements of hydraulic properties such as hydraulic conductivity, porosity, 
storativity, dispersivity, etc. exhibit a large degree of spatial variability [Freeze, 1975; Delhomme, 1979; 
Gelhar, 1986]. The observed variability suggests that it may be useful to describe such parameters in a 
stochastic context rather than in the traditional deterministic one. The traditional deterministic approach in 
which the aquifer properties are represented as a unique local parameter throughout the entire flow domain 
or represented by multi-layered system each of that can be characterized by distinct parameter is not 
realistic in many geological settings. In reality, subsurface hydrogeological parameters rarely possess 
uniform properties; on the contrary, their properties usually vary in a discrete or continuous manner on a 
multiplicity of scales from one location to another. The often encounters random spatial fluctuations 
cannot be adequately described by smooth deterministic functions [e.g. Bakr, 1976 and Sudicky, 1986]. 
On the other hand, aquifer parameters are uncertain. This uncertainty is due to the fact that parameters are 
measured only at some sampled locations such as selected well locations and depth intervals that are often 
sparse and/or the intrinsic complexity of the geological process that causes the variability. Groundwater 
flow and transport are therefore more realistically modelled via the stochastic approach. The word 
stochastic has its origin in the Greek adjective στoχαστικoς which means skilful at aiming or guessing 
[Haldorsen, Brand and MacDonald, 1987]. The classical theory of flow through porous media is derived, 
on deterministic bases, from the principles of continuum mechanics. The principle of mass conservation of 
flow through a saturated control volume of the porous medium leads to an expression for the continuity 
through the porous medium in terms of the specific discharge. By introducing Darcy's law, one can get the 
governing equation of flow through porous media in terms of pressures. This equation is in the form of an 



ordinary differential equation in one-dimensional steady flow problems, and in the form of partial 
differential equations in two- and three-dimensional flow problems. Stochastic techniques either analytical 
or numerical are available to solve these differential equations with stochastic parameters. These 
techniques are the tools to evaluate the effects of spatial variability of the hydro-geological parameters on 
flow and transport characteristics in porous formations. Before discussion of some selected techniques a 
brief review of the concepts and properties of stochastic processes is given.  
 
2. Definition of Stochastic Processes 
 
A stochastic process may be defined, according to Bartlett [1960, referenced by Krumbein, 1967] " some 
possible actual, e.g. physical process in the real world, that has some random or stochastic element 
involved in its structures". If a given process operating through time or space, it is thought of as a system 
comprising a particular set of states. Then in a classical deterministic model the state of the system in time 
or space can be exactly predicted from knowledge of the functional relation specified by the governing 
differential equations of the system (deterministic regularity). On the other hand, in the purely stochastic 
model, the state of a system at any point in time or space is characterized by the underling fixed 
probabilities of the states in that system (statistical regularity).  

A stochastic process in which the variation of a property of a physical phenomenon is represented 
in one co-ordinate dimension is called uni-dimensional stochastic process. The co-ordinate dimension can 
be time as in time series, or space as in space series. A multi-dimensional stochastic process is called a 
random field. A random field is defined as a mathematical way to describe spatial variations of properties 
of a physical phenomenon. These spatial variations can be studied by means of stochastic processes 
representing these variations in a continuous sense over the space considered or at discrete points in it. A 
stochastic process can be defined mathematically as a collection of random variables. This definition could 
be given in a mathematical form as the set {[x, Z(x,ζi)], x ε Rn }, i = 1,2,3...,m [Marsily, 1986]. Z(x,ζ) is 
stochastic process, (random function), x is the co-ordinates of a point in n-dimensional space, ζ is a state 
variable (the model parameter), Z(x,ζi) represents one single  realization of the stochastic process, i= 
1,2,...,m (i: number of realizations of the stochastic process Z), Z(x0,ζ) = random variable, i.e., the 
ensemble of the realizations of the stochastic process Z at x0, and Z(x0,ζi)= single value of Z at x0. For 
simplification the variable ζ is generally omitted and the notation of this stochastic process is Z(x). 
  
3. Stationarity, Non-stationarity, Intrinsic Hypothesis and Ergodicity 
 
(i) Stationarity (Statistical Homogeneity) 
Stationarity is a statistical property describing the state of variability of the stochastic process. The 
stationarity can be tested for all moments of the stochastic process. The stochastic process is said to be 
second-order stationary if the mean value of a stochastic process is constant at all points in the field that 
means the mean does not depend on the position. This can be expressed mathematically as, 

 µZ = )}xE{Z(  (1) 

and if the covariance of a stochastic process depends only on the difference between the position vectors 
of two points (xi-xj)= sij the separation vector, and does not depend on the position vectors xi and xj 
themselves. This can be expressed mathematically as, 
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this implies that the variance is independent of x, 

 

 
 
 



 [ ] σ) =  = Cov(Z(x)Var Z
20  (3) 

 
In the physical sense, one thinks of a medium whose variability is the same throughout the formation of 
interest, so that the covariance is independent of the position but depends on the separation vector [Bakr et 
al., 1978]. 
  
(ii) Non-stationarity  
A stochastic process is called non-stationary, if the moments of the process are variants in 
space, i.e., from one position to another. On other words, the moments are not only depends 
on the separation vector, but also, on the position of the point in space. 
 
(iii) Intrinsic Hypothesis 
This is another statistical property that is weaker than the second order stationarity. The intrinsic 
hypothesis assumes that even if the variance of Z(x) is not finite, the variance of the first-order increments 
of Z(x) is finite and these increments are themselves second-order stationary. This hypothesis postulates 
that: (1) the mean is the same everywhere in the field; and (2) for all distances, s, the variance of the 
increments, {Z(x+s)-Z(x)} is a unique function of s so independent of x. A stochastic process that satisfies 
the stationarity of order two also satisfies the intrinsic hypothesis, but the converse is not true. The above 
two properties can be expressed by writing, 
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where, γ(s) is called the semi-variogram. 
Eq.(5) may be written as, 
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which means, that 2γ(s) is the mean squared difference for two points separated by a distance s. 
 From practical point of view, the intrinsic hypothesis is appealing, because it allows the 
determination of the statistical structure, without demanding the prior estimation of the mean. 
Furthermore, for a stationary random process, where both the covariance and the sime-variogram are exist, 
it is easy to show the relationship between them as, 

  (7) ) - Cov(s)(γ(s) = Cov 0

(iv) Ergodicity 
Ergodicity is a statistical property that implies that the statistics of a single realization in space (spatial 
statistics) are equivalent to the ensemble of all possible realizations (ensemble statistics). In other words, 
by observing the variability in space of a property from one realization in enough detail, it is possible to 
determine the probability distribution function of the random process for all possible realizations. This 
equivalence is achieved when the size of the space domain is sufficiently large or tends to infinity.  
 A multi-dimensional stochastic process is said to be isotropic, if the process does not have a 
preferred direction, i.e., the variability in the process is the same in all directions. On the other hand, the 
process is said to be anisotropic, if the variability changes from one direction to another. Properties of 
stationary stochastic processes may be represented in a lag domain either as an auto-correlation function of 
the lag s, or as cross-correlation function of s. The diagram used to display this function is called 
correlogram which represent the auto-correlation coefficients versus the lag s between the auto-correlated 
values of the process. The spatial auto-correlation is a measure of the spatial correlation structure of a 
process. It gives the degree to which a process is correlated with itself as a function of separation lag. The 
auto-correlation of stochastic process Z(x) is expressed mathematically by, 
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(i) Integral Scale 
The integral scale Iz  of auto-correlation function is defined by Dagan [1982] in analogy to Lumley and 
Panofsky [1964] as, 
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which implies that the average distance over which the process is auto-correlated in space. For practical 
applications, the integration is calculated over a certain limits [0, So] where, So is the smallest value of s at 
which the auto-correlation function becomes practically zero.  
 
(ii) Correlation Scale (Range) 
The correlation scale is defined as the distance over which the process is auto-correlated in space. It is 
calculated as the distance at which the auto-correlation function tends to zero. There are various ways [e.g. 
Smith, et al., 1979 a,b], some authors suggest the threshold value taken as e-1 to others [e.g. Gelhar, 1986]. 
In case of 2D isotropic exponential auto-correlation function is defined by, 
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5. Scales of Natural Variability (Heterogeneity) 
 
Heterogeneity can be found at various scales. Definitions of such scales differ from author to author. 
According to [Weber, 1986] these scales are described as:  
(i) Microscopic Scale: this scale of variability is over the grains and pores. It is in order of mm. At this 
scale flow inside the pores and between the grains is governed by Navier-Stokes equations.  
(ii) Macroscopic Scale: at this scale one is interested in cores and samples which contains many grains and 
pores. This scale is the average of all various microscopic variability. Darcy's law is emerged at this scale 
from the average over the enormous complexity of Navier-Stockes equations governing the flow at the 
pore scale. This variability is known also by Dagan [1986] as Darcy or laboratory scale where one is 
interested in material properties, like, porosity, permeability, and dispersivity. This scale is in order of ms 
that is also named by Bear [1979] the representative elementary volume (REV).  
(iii) Megascopic Scale: this scale describes the internal architecture of reservoir units and lithologies. In 
this scale one is interested in the dimensions, shapes, orientations and spatial disposition of lithofacies. 
This kind of variability is sometimes called field or local scale that is in order of 100 m.  
(iv) Gigascopic Scale: at this scale one is interested in regional geological features such as faults, fractures, 
aquifer size, depositional environments or regional tectonic events. This scale is also known as regional or 
formation scale that is in order of kms. Fig.1 shows the scales of variability according to Weber [1986].  
 
 
 
 
 
 

 

 
 
 



 
 
 

Fig.(1) Scales of Variability According to [Weber, 1986]. 
 
6. Site Characterization Using The Stochastic Approach   
 
The complex structure of the geological formations has attracted considerable attention from geologists, 
geostatisticians, hydrogeologists, oil reservoir engineers, civil engineers, mining engineers, environmental 
engineers and others who are interested in geoscience. The literature on techniques to describe 
heterogeneity is abundant and rapidly increasing. The basic idea behind the stochastic approach in site 
characterization is that a large number of synthetic geological structures are generated based on a 
stochastic description of the system. In case of single stochastic simulation, the geological judgement 
should be involved to decide for the most probable image of the geological system based on geological 
experience, intuition, common sense etc. However, in case of a multi-realization approach, Monte-Carlo 
approach is applied to estimate the uncertainty in the output (response) variables. A comprehensive review 
of the stochastic nature of reservoirs can be found in the literature of oil reservoirs, such as Haldorsen, 
Brand and MacDonald [1987], and Fayers and Hewett [1992]. In the stochastic approach two lines of 
thought are found in the literature. The first is the facies or discrete models and the second is the 
continuous models. This kind of classification can also be viewed as description of the different scales 
mentioned above. For instance, the discrete model is aiming to characterize megascopic scales and the 
continuous models are used to characterize the macroscopic scales. Description of these models is given 
next.  
 
6.1 Mosaic Facies (Discrete) Models 
 
These models focus on the geological description of the discrete features of natural formations. In this 
approach one is aiming to construct formation geological units, its geometric characteristics, lithologies, 
units dimensions (lengths, thickness, and widths), orientations and frequency of occurrence, etc. There are 
a variety of techniques for simulating geological patterns. These models are often used by petroleum 
geologists. One may distinguish two types:  
  
(i) Object-based models, Boolean models or Binary models:  



 

 
 
 

In these models, one may consider two states or phases e.g. sand and shale formation. Sand bodies are 
generated in the foreground while the background is shale or vice versa. The shape of the objects can be 
rectangles, ellipses or any other shape. The objects are distributed randomly in space with random sizes. 
There are two main parameters needed for such models, the density of the random objects per unit of 
volume and the statistical distribution of the sizes of the objects. The orientation of the objects with respect 
to the horizontal can also be considered in these models. Boolean models are very simple and flexible. The 
limitations come from the randomness in the location of the objects in space and the ignorance of the 
spatial connectivity between the objects in space. More detailed information can be found in a recent work 
by Chessa [1995]. The limitations of the object-based models motivated the development of the following 
models.   
 
(ii) Sequential-based models:  
These types of models can be divided broadly into two categories: (a) the first category is based on the 
theory of two-point auto and cross-covariance description of the spatial process; (b) the second category is 
based on a local conditional probability description of the spatial process. A model based on the first 
category is the so-called " Sequential Indicator Simulation" proposed by Journel [1989]. A reproduction of 
all facies proportions and auto and cross covariances could be ensured by this method. From a practical 
point of view, the only difficulty of this method is the inference of reliable covariance functions from the 
available data. Models based on the second category are:  
 " Classical Markov Chain Model". In this approach the stratigraphic sequence of geological units 
is described in terms of transition probability matrix. A one-dimensional Markov chain has been used by 
Krumbein [1967]. The sequence of layers is random but conditional on the preceding layer. A 
generalization of this approach is possible where the conditional dependence includes layers earlier than 
the preceding layer. For more details about this approach see Harbaugh and Bonham-Carter [1970]. A 
complete description of the Markov chain theory is presented in the next chapter (section 3.3). The 
limitation of this method is that it only characterize the variability in sedimentological sequence in vertical 
direction. An extension of this method into higher dimensions is the core of the next chapter where a new 
methodology is proposed. 
 " Poisson Random Lines Model", its theoretical work has been provided by Switzer [1965, 
referenced by Lin and Harbaugh, 1984] and has been applied by Lippman [1973]. The lines are used to 
represent boundaries between different soils. In this approach an estimation of a parameter governing the 
Poisson distribution is required. The parameter is used to determine the number of random lines used in 
the simulation step. Attempts have been done to estimate this parameter from the transition probabilities, 
but the question of the most appropriate procedure for estimating this parameter has not been resolved. 
Some attempts have been done to use this model, but no satisfactory results are found comparable with 
natural geological formations.   
 " Markovian Random Field Model" used by Cross and Jain [1983] to model 2D surface texture of 
natural materials. This method was originally developed for the application in the field of image 
processing. There is a similarity between image description and a reservoir description. It seems that such 
an approach is well suited to the characterization of underground reservoirs. The method does not use 
variogram or auto-correlation to describe the relationships between neighbouring locations, but it is based 
on the theory of conditional probability. The idea in this method is that the probability of a given state 
being present at a given node on a lattice depends only on the states in the immediate neighbourhood of 
the simulated grid point. Realizations of Markovian fields can be generated iteratively using a simulated 
annealing algorithm or Metropolis algorithm. Cross and Jain [1983] applied Metropolis algorithm to 
simulate Markovian fields. The Metropolis algorithm works briefly as follows. The states in the systems 
are generated by arbitrary distribution over the lattice. Two grid points are selected at random from the 
lattice. Then, simple exchange of grid points states based on conditional probabilities is performed by 
Metropolis algorithm. After each trial step in Metropolis algorithm a new permutation of the states of the 
grid points is created. The procedure continues iteratively until the marginal and the transitional 



probabilities of the states in the system are stabilized. The method seems promising in the field of 
reservoir characterization but the disadvantages of this method are its computer-intensive iterative 
procedure required to achieve equilibrium of the system and the difficulty to perform conditioning to 
honour measurements at their location.  
 
6.2 Continuous Models  
 
The continuous models are another way of describing heterogeneity. These models focus on rock property 
or parametric variability to describe the local variations of certain parameters (hydraulic conductivity, 
porosity, dispersivity... etc.). These types of models are frequently used in the field of stochastic 
subsurface hydrology. There are several methods for the generation of stochastic fields. Some of these 
methods are: " Multi-variate Method" developed by Iman [1980, referenced by Peck, et al., 1988], " 
Nearest Neighbour Method" developed by Whittle [1954], " Turning Bands Method" developed by 
Matheron [1973], " Spectral Methods" by Shinozuka and Jan [1972] and Mejia and Rodriguez-Iturbe 
[1974], " Fast Fourier Transform Method" by Borgman, [1984]; and Gutjahr [1989] and " Source Point 
Method" by Ghori, Heller and Singh [1992]. The first three methods are discussed in detail in this paper. 
The other methods are based more or less on the same background. Descriptions of these methods, their 
advantages, disadvantages limitations and algorithms for implementation are presented in the following 
sections. All these methods are based on the theory of regionalized variables developed by Matheron 
[1971] and they are used to generate realizations of stationary random fields of the model parameters.  
 
6.3 Hybrid Models 
 
The hybrid stochastic model is a combination of the two models described above. The essence of the 
hybrid model is that geological knowledge is used to describe mega-scopic variability in the form of the 
architecture of the formation, reservoir discontinuities and zonal boundaries with average hydraulic 
properties, while parametric data are used to model macro-scopic heterogeneity in a form of continuous 
spatial variability within each lithology. Each of these units would be treated as a separate, statistically 
homogeneous unit. A similar assumption was used by Brannan, et al. [1993]. In their model they assume 
that the geological formation is given and they only generate conductivity fields inside each unit. They 
also introduce lenses with different shapes and orientations in the generated fields. Elfeki, [1997] has 
developed a hybrid model combining soft information in Markov chain framework and the hard data in a 
classical Gaussian correlated random field. The model is promising to model two-scale of variability for 
flow and transport studies [see e.g. Elfeki et al. 1996 and 1998].    
  
7. Quantifying Uncertainty by The Monte-Carlo Approach and Generation of Random Fields: 
 
Monte-Carlo approach is based mainly on generating random fields of the hydrogeological parameters to 
represent the heterogeneity of the formation. Then, the usual groundwater flow and/or transport equations 
can be solved numerically in this geometrical structure. One can assume the probability density function 
of the model parameters or joint probability density function for a number of parameters in the model. The 
assumptions of these density functions are based on some field tests and/or laboratory tests. By using a 
random number generator, one generates a realization for each one of these parameters. The parameter 
generation can be correlated or uncorrelated depending on the type of the problem. With this parameter 
realization a classical numerical flow or/and transport model is run and a set of results is obtained. Another 
random selection of the parameters is made and the model is run again, and so on. It's necessary to have a 
very large number of runs, and the output model results corresponding to each input is obtained which can 
be represented mathematically by the stochastic process Φ(x,ζi). Statistical analysis of the ensemble of the 
output (i.e. Φ(x,ζi) for i = 1,2,..., m) can be done to get the mean, the variance, the covariance or the 
probability density function for each node with a location x in the grid. There are several methods in the 
literature used for generating random sequences with some auto-correlation structure. The most famous 
methods will be described in this section. Attention will be given to the Gaussian random fields, where 
most of the geostatistical parameters exhibit variability that follows a normal or log-normal probability 



density function. These methods can be classified as: (1) Direct methods or matrix methods, such as, 
multi-variate normal distribution and nearest neighbour method. (2) Indirect or transformation methods, 
such as, turning bands algorithm.    
 
(i) Multi-Variate Method 
In the uni-variate case as discussed in the preceding sections, only one random variable was considered. 
The multi-variate case given in this section is a natural extension of the uni-variate case, i.e., more than 
one random variable or what is called random vector will be discussed. A p-dimensional random vector 
Z={Z1,Z2,Z3,...,Zp}T is defined to have a multi-variate normal distribution if and only if the p-components 
of Z have a uni-variate normal distribution. The distribution of Z is denoted Np(µ,C). The multi-variate 
normal density function Np(µ,C), p-dimensional normal random variate, is given by Mood and Graybill 
[1963], 

where, Np(µ,C) is a multi-variate normal distribution with mean µ, and covariance matrix C, p is the 
number of parameters (nodes of the model), Z={Z1, Z2,..., Zp}T, p-dimensional random vector, (p×1), µ = 
{µ1,µ 2,…,µp}T , p-dimensional mean values vector, (p×1), T is superscript transpose operation of a matrix, 
-1 superscript is inverse operation of a matrix, C is a p×p covariance matrix, ⎮C⎮ is the determinant of 
the covariance matrix C, and σ2

Zi is the variance of the random parameter Zi.  
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 All the diagonal elements of the covariance matrix are the variances of the individual random 
variables and the off-diagonal components are covariances of two random variables Zi, Zj where, i=1,...p, 
and j=1,...p. The covariance matrix can be defined as the matrix which lists the correlations between the 
parameters. It should be noted that all the covariance matrices are symmetric. This property allows us to 
apply the theory of symmetric matrices. Sometimes it is convenient to normalize covariance matrices by 
converting the individual covariance in terms of the correlation coefficient ρ ij as, 
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where, Cov(Zi,Zj) is the covariance between Zi and Zj. 
  
 The generation of varieties with multi-variate distributions is more than with uni-variate 
distributions. The obvious difference is that in the generation of multi-variate distributions the 
dependencies (correlations) among the all components of the random vector must be handled. The general 
technique for the generation of multi-variate distributions is called "Conditional Distribution Approach". 
A brief description of this approach is given here. For more details about this method reference is made to 
Johnson [1987]. Let Z = {Z1,Z2,Z3,...Zp}T be the p-dimensional random vector of interest. The conditional 
distribution approach involves the following steps: (1) generate Z1 = z1 from the marginal distribution of Z1 
(uni-variate distribution of Z1); (2) generate Z2 = z2 from the conditional distribution of Z2 given Z1 = z1; 
(3) generate Z3 = z3 from the conditional distribution of Z3 given Z1 = z1 and Z2 = z2... and so forth through 
the p steps. 
 In certain statistical applications the covariance matrix gives the dependencies between the 
components of the random vectors. In case of random fields the same philosophy is applied. Each node in 
the field is considered as a component of a random vector that contains all the nodes in the field. The 
dependencies between the components are described by the auto-covariance function of the field. The 
method of multi-variate random number generation with a given covariance matrix of the system has been 

 

 
 
 



developed by [Iman, 1980, referenced by Peck, A. et al., editors, 1988]. It has been applied to groundwater 
flow by Townley [1984, 1985,1988]. The algorithm for generating random fields with a given covariance 
structure based on the covariance matrix of the system is as follows [Neuman, 1984]: 
1) Build the covariance matrix C of the system. The elements of C are denoted by, 
 

  (13) )Z ,Z( Cov = c jiij

and if i=j the covariances becomes the variances. 
 
If the random field is assumed to be statistically homogeneous (stationary), i.e., the mean is constant, the 
standard deviation is constant, and the covariance depends only on the distance vector between the points 
in the domain, then one can write the elements of the covariance matrix as, 

 )s(  = c ij
2
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where, σ2
Z is the variance of the process Z, ρ(sij) is the auto-correlation function, and sij is the distance 

vector between point i and point j. 
2) One has to decompose the covariance matrix by the Cholesky factorization method Westlake [1968] 
into 

  (15) U L = C

where, L is a unique lower triangular matrix, U is a unique upper triangular matrix, and U is LT which 
means that U is the transpose of L. 
Cholesky method is sometimes called " Square-Root" method which is used only for the decomposition of 
symmetric matrices. For more details about Cholesky method see Westlake [1968]. 
3) Generation of normally distributed p-dimensional sequence of independent random numbers with zero 
mean and unit standard deviation N(0,1) which can be expressed as, ε = {ε1, ε2,.., εp}T where, ε is vector 
of normally distributed random numbers, and εi is the i-th random number drawn from N(0,1). 
4) Multiplication of the independent random vector ε by the triangular matrix U to get a vector of 
correlated random numbers. This vector can be expressed by matrix multiplication convention as, 

  (16) ε U = X

where, X is a vector of multi-variate normal random Np(0,I), 0 is zero mean vector (p×1), and I is the 
identity matrix (p×p). The desired random field is then obtained by 

  (17)  X+ µ = Z

The random process Z is the one for which the samples Z1, Z2,..., Zp are jointly distributed according to a 
multi-variate probability density function that is given by Eq.(13). In the Monte-Carlo approach, the 
matrix decomposition by the Cholesky method is performed only once, then a large number of correlated 
fields can be generated at very low computer cost because this only involves the product of a vector of 
random numbers by the decomposed matrix. 
 
 
(ii) Nearest Neighbour Method 
Another method that is used for generating a correlated random field is called " Nearest Neighbour 
Method". The general framework required for this method was presented by Whittle [1954]. This method 
is sometimes called Whittle Model. The idea of this method is based on generating an independent 
random field with one of the methods described in the previous sections. Then, the value of a parameter at 
a given node is replaced by taking weighted average of the previous random values at the given node and 



a few surrounding ones. This model was first applied to one-dimensional steady state groundwater flow in 
a bounded domain by Smith and Freeze [1979a] and then they also extended the same approach to the 
two-dimensional steady state groundwater flow in [1979b]. This method can be expanded to three-
dimensions. A general description of this spatial model used by Smith and Freeze can be written in a 
generalized form proposed by Whittle [1954], 

  (18) ε + Z W  = Z ijijiji ∑ ≠

where, Zi is random variable satisfying the nearest neighbour relation, εi is uncorrelated normal random 
number with E(εi) = 0, and Var(εi) = σi

2 , i=1,2,.........p, and Wij are the weighting coefficients. 
 In case of the anisotropic first-order auto-regressive scheme, Eq.(18) can be rewritten according to 
Smith and Freeze [1979b] as,             

  (19) εαα ij1+ij1-ijy1j+i1j-ixij  + )Z + Z( + )Z + Z( = Z

where, αx is an auto-regressive parameter expressing the degree of dependence of Zij on its two 
neighbouring values in the horizontal direction, Zi-1j and Zi+1j, (αx<1), and αy is an auto-regressive 
parameter expressing the degree of dependence of Zij on its two neighbouring values in the vertical 
direction, Zij-1 and Zij+1, (αy<1). 
Eq.(19) should be applied with modifications at the boundaries of the domain of interest where necessary, 
because the blocks do not extend across the boundaries i.e. the equation will be truncated near the 
boundary. Eq.(19) can be recanted in matrix notation as, 

  (20) ε + Z  W= Z

where, matrix W is called the p×p connectivity matrix, or the p×p spatial lag operator of scaled weights, 
wkl. The elements of the connectivity matrix wkl are defined as, 

 
N
w = w

*
kl

kl  (21) 

where, k = 1,..., p, l = 1,..., p, and k ≠ l, w*
kl = αx if the blocks k and l are contiguous in the x-direction, w*

kl 
= αy if the blocks k and l are contiguous in the y-direction, and w*

kl = 0 otherwise, i.e., if k = l, or if blocks 
k and l are not contiguous, and N is the total number of blocks surrounding block k, i.e., N=4 if block k is 
located inside the domain that is being modeled, N=3 if block k is located on the boundary of the domain, 
and N=2 if block k is located at a corner of the domain. 
The scaling of N is required to ensure stationarity in the generated sequence of Zij values near the domain 
boundaries because Eq.(20) is truncated near the boundaries.  
 The Z sequence has a mean µZ and standard deviation σZ. Similarly, ε has mean µε and standard 
deviation σε. In order to simulate the predetermined standard deviation σZ, one should start from a random 
sequence ε with a standard deviation of one. This vector can be pre-multiplied by an appropriate factor to 
yield the desired value of σZ. This factor is denoted by η. Eq.(20) becomes, 

  (22) ε + Z  W= Z η 

Eq.(22) can be solved for Z sequence as follows 

  (23) ε  ) W- I ( = Z -1 η

 

 
 
 



 To determine the simulation parameter η, one can follow the procedure of Smith and Freeze 
[1979] or the procedure of [Baker, 1984] as given in brief here. The auto-correlation matrix of the process 
Z can be written as 

 
σ

)E( = 
Z

2
Z ZR

T

 (24) 

Substitution of Eq.(23) into Eq.(24) and with some algebraic manipulations, one gets 

 ση
σ

ε
22

2
Z

.  1 = VR  (25) 

where, V = (I - W)-1.((I - W)-1)T = ((I - W).(I - W)T)-1

Let σε be equal to one in Eq.(25), then 

 η
σ

2
2
Z

  1 = VR  (26) 

All the diagonal elements of R are equal to unity by definition, hence, by taking the trace (the sum of the 
elements on the main diagonal of the square matrix) and solving the resultant scalar equation for η gives, 

 
V

 = 
m

Zση  (27) 

where, Vm = tr V/p, and the symbol "tr" is  the trace of the matrix, which is given by, tr V  = Σ vii , i= 1,...,p 
Substituting Eq.(27) into Eq.(23), the final nearest neighbour generator is obtained, 

where, the Z sequences have a mean of zero. By adding the constant µZ to each element of Z the system of 
equations for the nearest neighbour model can be written as  

 εW I Z  
V
σ )-  = (

m

Z-1  (28) 

 εW IµZ Z  .) - ( +  = Z1-

V m

σ  (29) 

     The analysis of the covariance function describing the generated random field with first-order 
dependence is approximately an exponential decay function Smith and Freeze [1979]. By adjusting the 
number of neighbours (higher-order nearest neighbour models), the weighting coefficients and the 
variance of the initial random independent parameters, it is possible to approximately fit any given real 
covariance function as observed on the data. The advantage of this technique can be seen in Eq.(29). At 
the beginning of any simulation the matrix (I - W) must be inverted only once. For each realization of the 
process Z, the inverted matrix (I - W)-1 is simply multiplied by the generated random vector ηε. The 
drawback of this method is computing the inverse matrix. 
 
(iii) Turning Bands Method (TBM) 
The turning bands method is one of the techniques which is designed to generate a realization of 
stationary, correlated, and multidimensional Gaussian random field from a normal distribution with zero 



mean and a specified covariance structure. The TBM was first proposed by Matheron [1973] and applied 
by the Ecole des Mines de Paris [e.g. Journel, 1974; and Delhomme, 1979]. The TBM is based on the 
theory of random fields (multidimensional stochastic process). Its basic concept is to transform a 
multidimensional simulation into the sum of a series of equivalent uni-dimensional simulations 
[Mantoglou and Wilson, 1982]. The basic idea of the algorithm in brief is, generating two- and three-
dimensional fields by subsequent projection and combining values found from a series of one-dimensional 
simulations along several lines radiating outward from an arbitrary origin in space. This procedure yields 
discrete values or realizations of the random field. This method has been widely used in porous flow and 
transport studies. TBM is a repetition of a two step procedure. Firstly, a realization of a random process 
with a prescribed auto-covariance function and zero mean is generated on one line. The Cholesky 
decomposition method can be used (but with much smaller correlation matrix dimensions) or by auto-
regression methods, like nearest neighbour. Secondly, orthogonal projection of the generated line process 
to each point in the simulated two- or three-dimensional random field. The two steps are repeated for a 
given number of lines and then a final value is assigned to each grid point in the field by taking a weighted 
average over the total number of lines.  
 There are two main approaches for generating the one-dimensional line process in TBM. The first 
one is space domain approach that was first proposed by Matheron and applied by Journal and Huijbregts 
[1978] and Delhomme [1979]. This approach can handle only particular forms of auto-correlation 
functions. The second one is the spectral (frequency) domain approach STBM. This approach has been 
implemented by Mantoglou and Wilson [1982]. It is a more general approach that can handle a wide 
variety of two-dimensional processes, multi-variate (cross-correlated) processes, as well as spatial 
averaged (integrated) processes. 
 
(a) Theoretical Background of TBM: 
Let Zi(u), i = 1,..., L a set of N independent realizations of a one-dimensional, second order stationarity 
stochastic process on a line u with an auto-correlation function ρ1(uo), where uo is the spatial lag on the 
line. Then the values given by the relation, 

  (u)Z 
L

1 = z)y,(x,Z
L

i
is ∑

=1

 (30) 

is a realization of a two- or three-dimensional process. The subscript s represents the term " simulated" or " 
synthetic". The field generated by Eq.(30) has zero mean as well. The relation between the auto-
correlation function on the line process ρ1(uo) and the auto-correlation function in the three-dimensional 
random field ρ(uo) is given by [for the derivation, refer to Mantoglou and Wilson, 1982; and Mantoglou, 
1987], 

 [ )u( u
du
d = )u( oo

o
o1 ρρ ]  (31) 

 
and for two-dimensional field the relationship becomes, 
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where, s is the spatial lag in two-dimensional field. 

 

 
 
 



 It can be observed from Eq.(32) that, it is not easy to obtain ρ1(uo) directly as a function of ρ(s). 
Sironvalle [1980] wrote [referenced by Baker, 1984] " This integral equation is too difficult to solve, so 
we discard this (the TBM) method." Therefore, Mantoglou and Wilson [1982] used a spectral method to 
generate uni-dimensional process along the lines for different types of auto-correlation functions. In the 
following section this method will be given more attention. 
(b) Spectral Turning Bands Method (STBM): 
Generation of 2-D random fields by TBM needs the solution of the integral equation given by Eq.(32). 
This integral equation cannot be directly expressed as a function of ρ(s). Particular solutions can be found 
for certain two-dimensional auto-correlation functions [Mantoglou and Wilson, 1982]. To circumvent this 
difficulty, an expression for the spectral density function of the one-dimensional processes as a function of 
the radial spectral density function of the two-dimensional process is used. This expression is given in 
Fourier space by, 

 )ω S(
2

 = )(S Z
2

1
σω  (33) 

This means, that the spectral density function of the uni-dimensional process S1(ω) along the turning bands 
lines is given by one half of the radial spectral density function S(ω) of the two-dimensional process 
multiplied by the variance of the two-dimensional process. Steps used in implementing the STBM 
generator in simulating a two-dimensional random field are given below:  
 
(1) Generation of One-dimensional Uni-variate Process on The Turning Bands Line: 
In the literature, there are two main techniques used for generation of the line process. The first, is called 
the "Fast Fourier Transform" (FFT) algorithm, which can be used to construct a complex process X(u) = 
Z(u) + i Y(u) given by Tompson, et al. [1989], 

  (34) )dW( e  )dW( e = X(u) j
ui

all
all

ui j ωω ω
ω

ω

ω ∑≈∫

where, in the approximate form, X is the sum of a complex series of sinusoidal functions of varying 
wavelength, each magnified by complex random amplitude with zero mean dW(ωj), ωj = j.∆ω. 
 The second is the "Standard Fourier Integration" method. The real part of the complex process 
X(u) is given by 

  (35) ∫
ω

ωφωω
all

) +u  ( |)dW(| =  Z(u)= X(u) Re cos

can be used to develop a straightforward discrete approximation using positive frequencies, 

  (36) ) +u  ( |)dW(| = (u)Z jjj
M
j=1i φωω cos∑

where, φj represents independent random angles which is uniformly distributed between 0 and 2π, M is 
the number of harmonics used in the calculations, ωj = (j - .5) ∆ω, j = 1,2,...M, and ∆ω is the discretized 
frequency which is given by ωmax/M, and ωmax is the maximum frequency used in the calculations. 
 
The magnitude ⎮dW(ωj)⎮ is taken to be deterministic from the spectrum as, 

 [ ]ωωω ∆).(S 4 = |)dW(| j1
1/2

j  (37) 

where, S1(ωj) is the spectral density function of the real process Z(u) on the line. 



 
S1(ω) is assumed to be insignificant outside the region [-ωmax,+ωmax]. Substitution of Eq.(37) into Eq.(36) 
gives the generator of the uni-dimensional process on line i as, 

 [ ] ) +u  ( ).(S 2 = (u)Z jjj1
1/2M

j=1i φωωω cos∆∑  (38) 

This is the classical method proposed by Rice [1954]. The form of Eq.(38) is slightly modified by 
Shinozuka and Jan [1972] to give, 

 [ ] ) +u  ( ).(S 2 = (u)Z jjj1
1/2M

j=1i φωωω ′∆∑ cos  (39) 

where, ώj = ωj + δω 
 The frequency δω is a small random frequency added here in order to avoid periodicities. δω is 
uniformly distributed between -∆ώ/2 and ∆ώ/2, where, ∆ώ is a small frequency, ∆ώ<<∆ω. ∆ώ is taken 
equal to ∆ω/20  according to Shinozuka and Jan [1972]. This approach involves a discrete summation over 
frequency increments ∆ω up to a maximum cutoff frequency of ωmax = M ∆ω. The method involves a 
larger computational effort than FFT, but it is more flexible in the choice of the parameters, M, ∆ω, ∆u, 
ωmax and umax [Tompson, et al., 1989]. 
(2) Distribution of The Turning Bands Lines and The Number of Lines: 
Theory of TBM is based on an infinite number of lines. The lines are assumed to be randomly oriented, as 
taken from a uniform distribution on a unit circle in 2-D space or sphere in 3-D space. It has been shown 
by Mantoglou and Wilson [1982] that by spacing the lines evenly on the unit circle or sphere, with 
prescribed directions, the simulated correlation function converges much faster to the theoretical function. 
Mantoglou and Wilson show that a number of 8 -16 lines are generally a satisfactory choice in isotropic 
auto-correlation function. In anisotropic case, however, a larger number of lines might be required. 
(3) Spectral Discretization: 
A realization of the line process Zi(un) at point n on line i is constructed from a discrete integration of a 
series of random components over all the  frequency domain. The frequency discretization ∆ω must be 
kept small enough to ensure a sufficient degree of accuracy, while the number of harmonics M must be 
kept large enough to account for the contributions of the spectral tail at ωmax = M ∆ω. Mantoglou and 
Wilson [1982] considered the case where M is varying between 50 and 100 and ωmax is 40 times the 
correlation length of isotropic auto-correlation function in both cases. They found that while the accuracy 
for M = 50 is poor at large distances, the accuracy shown for M = 100 improves rapidly. 
(4) Physical Discretization: 
The physical increment ∆u used along the line should be chosen less than the domain discretization ∆x, ∆y 
as a pragmatic rule of thumb in order to avoid some numerical problems [Mantoglou and Wilson, 1982].   
(5) Length of The Turning Bands Lines: 
The minimum length of the line is determined by the orientation of the line and the size of the simulation 
domain. 
(6) Generation of The Simulated Field: 
The construction of a simulated field Zs(x,y,z) will include the selection of a finite number of lines L and 
their orientation, the discrete simulation of one-dimensional process Zi(u) on each line, the subsequent 
projection of these values onto all simulation points x in the domain, and the division of each sum at each 
point by L1/2 to yield Zs(x,y,z). 
 
8. Conditional Simulations of Random Fields upon Measurements of Field Parameters 

 

 
 
 



 
All the stochastic methods presented thus far are used for unconditional simulation of stationary random 
fields. These methods reproduce the first and second moments or the PDF of the simulated field. From a 
practical point of view, it is desirable that the random fields not only reproduce the spatial structure of the 
field but also honour the measured data and their locations. This requires an implementation of some kind 
of conditioning, so that the generated realizations are constrained to the available field measurements. One 
of the advantages of conditioning is to reduce uncertainty in the simulated fields. The uncertainty will be 
reduced significantly (perhaps to zero in the absence of measurement errors) at the sampled locations and 
it will be reduced in the vicinity of the sampled locations. The conditional simulation can be achieved by 
spatial estimation approaches such as Kriging. Kriging is known as the best linear, unbiased estimator 
(BLUE). Therefore, it has advantages over the conventional spatial interpolator techniques (e.g. least 
square method, weighted residuals method, etc. [see for more details Christakos, G., 1992]) in providing 
not only the estimates of point values, but also the variance of the corresponding errors of estimation 
(uncertainty associated with the estimate). One drawback of the Kriging method is that the estimated field 
is smoother than the real data. Therefore using conditional simulation with Kriging reproduces closely the 
true variability of the field and honours the measurements. The methods of conditioning can be broadly 
divided into: 
 (i)" Direct Approaches or Matrical Methods": these approaches draw the realizations directly 
from the sub-ensemble of conditional realizations. The famous algorithms are Gaussian conditional 
simulations via the LU triangular decomposition of the autocovariance. This method has been applied to 
subsurface hydrology by Neuman [1984]. The limitation of this method is that  it is restricted in the size of 
the grid it can handle. Another method is called sequential simulation algorithm suggested by Journal and 
Huijbreghts [1981]. This method works by calculating the conditional distribution of grid point values 
given the data values at the sampled locations and by assuming a multivariate normal distribution of the 
given data. 
 (ii)" Indirect Approaches": these approaches are considered as two steps. Firstly an unconditional 
realization is generated. Secondly, a modification is used to honour the data at their locations. This method 
works simply by adding a correlated error obtained from the simulation to a kriged map from the sampled 
data. In brief, the procedure is the following:  
(1) A kriged map is generated from the field data with the sampled locations that will be smoother than 
reality. (2) An unconditional simulated field is generated by TBM from the data that reproduces the spatial 
structure of the underlying random function. (3) Allocation of the unconditional values (pseudo 
measurements) at the sites of measurements is done on the simulated map in step 2. (4) Another kriged 
map is generated from the pseudo measurements. (5) A pseudo error is calculated by subtracting the 
kriged map in step 4 from the unconditional simulation in step 2. (6) The conditional simulation map is 
generated by adding the pseudo error in step 5 to the kriged map in step 1. So, 

  (40) )Z - Z( + Z = Z kususkdcs

where, Zcs is the required conditional simulation, Zkd is the kriged map from the real data, Zus is the 
unconditional simulation, Zkus is the kriged map with the pseudo measurements.  
 Conditional simulation has been implemented analytically in flow models by [Dagan, 1982a] 
under the assumption of multi-Gaussian distribution where conditional probabilities can be expressed 
analytically or by Kriging equations. 
  
9. Evaluation of Some Techniques 
 
In this section, a comparison of the techniques has been worked out and a discussion of the advantages 
and disadvantages of these methods are tabulated in Table (1). Table (1) displays a comparison between 
the different techniques applied for generation of random fields that are used input for the numerical 
simulation approach (Monte-Carlo). Fig.(2) shows three single realizations of log-hydraulic conductivity 
generated in a domain of dimensions 15 ×15 m by Nearest Neighbour Generator, NNG, Multi-Variate 
Generator, MVG, and Turning Bands Generator, TBG, worked by Elfeki [1996]. The domain is 



discretized by 1 m in both horizontal and vertical directions. The parameters used for the simulations are 
〈K〉=1 m/day and σK=2 m/day and the corresponding logarithmic transform are 〈Y〉=-0.8 and σY=1.3. The 
first order auto-regressive parameters of the NNG are chosen to be αx=.98 and αy =.5 which generate 
statistically anisotropic field. Average values of the correlation lengths are calculated from the generated 
fields over 100 realizations resulting in λx=1.2 m and λy=0.73 m which show a relatively isotropic field 
although the ratio of the auto-regressive parameters is about 0.5. These values are used to generate random 
fields by the other methods (MVG, TBG) assuming anisotropic exponential auto-correlations. From 
Fig.(2), the three realizations more or less identical. The auto-correlation function is calculated over 
ensemble average of 100 realizations and plotted in Fig.(3) with the theoretical auto-correlation for 
comparison which seems reasonably good. Also the calculated PDF of a single realization is plotted with 
the given PDF in the same figure which is fairly good as well. The CPU time of 100 realization with NNG 
or MVG on PC with 486 processor was few seconds but for the TBG was about 30 minutes. 
       

 
Fig.(2) Three Single Realizations Generated by Different Methods. 

 
 

 

 
 
 



 
 

Fig.(3) Auto-correlation and PDF of the Generated Fields in Fig.(2).



 

 
 
 

 
Table(1) Comparison between Different Methods for The Generation of  Stationary Random Fields. 

       Method of Simulation                
Item of Comparison  

                  Direct Methods (Matrix Methods)         Indirect Methods 

          Multi-Variate 
             (MVG)  

        Nearest Neighbour                   
(NNG)           

          Turning Bands                    
(TBG) 

(1) field data needed for simulation 
 

PDF of the hydrogeological parameters, 
autocorrelation function, and correlation 
lengths 

PDF of hydrogeological parameters, 
autoregressive parameters, order of the 
nearest neighbour model to specify a 
certain auto-correlation function 

PDF of hydrogeological parameters, 
autocorrelation function, and 
correlation lengths 
 

(2) type of probability density functions 
(PDF) that can be handled by  the method 

any probability density function any probability density function normal probability density functions 
(Gaussian fields) 

(3) handling auto-correlation structure of  
     any kind 

it is straightforward by filling the 
covariance matrix of the system using the 
desired auto-correlation function. 

a trial and error procedure by adjusting 
the auto-regressive parameters and the 
order of the nearest neighbour till it fits 
the desired auto-correlation; not easy. 

it needs a solution of an integral 
equation that relates the auto-
correlation in the field with the auto-
correlation on the line process which 
in some cases is too difficult to solve. 
In some cases it may be resorted to 
spectral TBM to tackle this problem. 

(4) stationarity of the simulated field it can handle stationary and non-
stationary fields.  

it can handle stationary and non-
stationary fields, but the method does not 
guarantee stationarity even if the field is 
stationary 

the field should be stationary 

(5) statistical anisotropy it handles anisotropy in a simple way by 
introducing anisotropic auto-correlation 
functions 

it handles a limited range of anisotropy in 
a simple way by introducing different 
values of auto-regressive parameters in 
different directions, but it is difficult to 
handle highly anisotropic fields. The 

it handles anisotropy using 
transformation method, i.e., an 
isotropy problem is first transformed 
into isotropic problem using linear 
transformation. Second, an isotropic 



method does not guarantee isotropy or 
anisotropy of the simulated field. 

field in the transformed space is 
generated. Third, transforming back; 
it needs additional computational 
efforts and this sort of transform 
works only for ellipsoidal types of 
auto-correlation (exponential model). 

(6) matrix operations used L-U decomposition of the covariance 
matrix by Cholesky method once, and 
multiplication of the decomposed matrix 
by random vector for the generation of 
each realization. 

inversion of a banded matrix (the identity 
matrix minus spatial lag operator matrix) 
once, and multiplication by a random 
vector for each realization. 

the line process can be generated by 
matrix methods, but with a much 
smaller matrix dimensions or by 
spectral methods, and generation of a 
line process several times and its 
projection onto the problem domain. 

(7) storage needed order of (~N2), where, N is the number of 
simulated points. 

order of (~N2). order of (~N). 

(8) computer time and  requirements for 
generating one realization 

the major part of the computer time is 
spent on generating the covariance matrix 
and its decomposition, once the 
decomposition is available the generation 
of one realization is very fast, just by 
multiplication of the decomposed matrix 
by uncorrelated random vector. 

the major part of the computer time is 
spent on generating the matrices and its 
inversion, once the inversion is available 
the generation of one realization is very 
fast, just by multiplication of the inverted 
matrix by uncorrelated random vector. 

there is no investment in computer 
time, but the generation of one 
realization is "expensive". 

(9) ergodicity of the simulated field non-ergodic because it handles a limited 
number of simulated points. 

non-ergodic because it handles a limited 
number of simulated points. 

ergodic, with lines evenly spaced at 
pre-specified directions even for a 
finite number of lines. 

(10) conditioning direct direct indirect, by Kriging 

(11) efficiency of the method efficient for a few points and a large 
number of realizations 

efficient for few points and a large 
number of realizations. 

efficient for many points and a few 
number of realizations. 

 



 

10. Conclusions  
  
The following conclusions can be drawn from this review, 
(1) Selection of one of the presented techniques for applications to field problems depends on the 

available field data. Each technique requires specific information. The application depends also on the 
computer facilities available in terms of storage and speed. 

(2)  There is no clear proof that one of the numerical simulation techniques is significantly superior to any 
other, but it is obvious from Table (1) that the multi-variate method is more general, although it needs 
much storage compared with the turning bands method. 

(3) Solution of stochastic differential equations governing subsurface fluid flow and transport are based 
on the assumption of Gaussian characteristics and stationarity of the input parameters. Recently, in the 
hydrogeological field, a considerable attention is devoted to the deviations from these assumptions. It 
has been shown from geological survey [Krumbein, 1967] that many geological patterns exhibit 
Markovian properties. Elfeki et al. [1995] has focused on this area of research. 

(4) The presented stationary stochastic field models are attractive from a statistical point of view, but most 
of them are less applicable because they are either far from being realistic from geological point of 
view or they need intensive hard data (direct measurements of the hydrogeological parameters) to 
characterize the geological attributes in a proper way. Therefore, this conclusion has motivated new 
ideas to characterize geological features see e.g. Elfeki, et al. [1995], Elfeki, [1997] and Dekking et al. 
[1999]. 
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