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ABSTRACT
In this paper, we focus on the influence of temporal variations in the regional hydraulic gradient, particularly, on the impact of temporal variations
in the boundary conditions on the spreading of solute plumes in homogenous aquifers. We examined the problem by numerical simulations. Two-
dimensional fully implicit finite difference model TRANS_GW_2D for the unsteady groundwater flow and a random walk particle tracking model
TRANS_RW_2D for solute transport have been developed to solve the governing equations without restriction on the values of aquifer storativity or
on the magnitude of the temporal fluctuations. It has been shown that transient flow conditions (in terms of gradient magnitude variability) have a
significant impact on contaminant transport only if the amplitude and period of the oscillations are relatively large. For relatively small oscillations,
a steady state flow field can be justified. Transient conditions may be relevant in coastal aquifers with high tidal amplitudes. This tidal variation can
have an effect on the spreading of solutes and on salt-water intrusion. Our numerical experiments demonstrate that in case of relatively high storativity
values, the dispersion coefficient is amplified in time as the plume moves towards the fluctuating boundary.
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1 Introduction

Contamination of groundwater by chemicals is a worldwide
environmental problem. Current concern and awareness of
groundwater contamination problems have motivated studies of
contaminant transport in porous media. Many studies assume a
steady state flow field. However, natural flow systems are rarely
in a steady state. Temporal fluctuations in the recharge or in the
boundary conditions lead to variations in the velocity field that
contribute to dispersive mixing. This behavior has been supported
by many field observations (e.g. Gelhar, 1993).
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Significant progress of steady groundwater flow in stationary
random fields has been achieved (e.g. Smith and Freeze, 1979;
Ababou et al., 1989; Gelhar, 1993) to study the influence of
spatial variability on the spreading of solutes in porous media.
Many researchers show still vivid interest to describe the influ-
ence of transient conditions on contaminant spreading. To the
authors’ knowledge, in the hydrogeological community, little
attention is made on evaluating the effects of transient condi-
tions (Goode and Konikow, 1990; Yim and Mohsen, 1992; Ross,
1999; Schirmer, et al., 2001). Two main transient conditions
are causing the spreading of solutes that can be classified as the
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gradient magnitude variability (i.e. the changes in the magnitude
of the head gradients in time) and the gradient direction vari-
ability [i.e the changes in the direction of the head gradients in
time (Gelhar, 1993)]. Kinzelbach and Ackerer (1986) showed
that temporal variations yields a larger transverse dispersivity,
but smaller longitudinal dispersivity when compared with steady
flow condition. Goode and Konikow (1990) found that direc-
tional variation in hydraulic gradient is more important than the
magnitude variation in the hydraulic gradient.

Different form the work by Goode and Konikow (1990), in
this paper, we focus on the influence of temporal variations in
the magnitude of the hydraulic gradient, particularly, the impact
of temporal variations of the head boundary conditions. We exam-
ined the problem by numerical simulations, using the governing
equations without a restriction to the values of aquifer storativity
or on the magnitude of the temporal fluctuations. A sensitivity
analysis has been performed to study the influence of signals of
single and compound periods, storativity of the aquifer, mag-
nitude of the period of oscillations on the dispersive mixing of
solute plumes.

2 Numerical experiments and model verification

We consider a homogeneous aquifer of a constant thickness with
impermeable boundaries at the top and the bottom of the aquifer
as shown in Fig. 1 (a, cross-section). At the left side (upstream
boundary), a river of constant water level is feeding the aquifer.
The main direction of the flow of water is from left to right. At the
right side (downstream boundary), the water level is fluctuating
with a given function. It should also be mentioned that lateral
sides of the aquifer are also considered impermeable boundaries
(see Fig. 1b, plan view). The influence of water level fluctuations

Figure 1 Sketch of flow and transport domain (a) aquifer cross-section,
(b) aquifer plan with boundary conditions. Left boundary is called
upstream boundary and right boundary is called downstream boundary.
For system dimensions see Table 1.

on the aquifer response and consequently on the transport of
solute under these conditions are investigated.

For the groundwater flow, a numerical model based on a
fully implicit finite difference numerical scheme has been devel-
oped to simulate transient flow in a confined aquifer (Elfeki,
2003). We consider simple boundary conditions in homoge-
neous and isotropic aquifer where analytical solutions exist for
model verification. The differential equation which describes
the flow in a confined aquifer of thickness b, storativity S and
conductivity K, is,

∂2h

∂x2
= β2 ∂h

∂t
with β2 = S

Kb

where h is the hydraulic head. The initial and boundary conditions
of the hydraulic head are,

h(0, t) = 0

h(d, t) = h0 cos(ωt)

whereh0 is the amplitude of the wave at the downstream boundary
and ω is the angular frequency. The analytical solution is given by,
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where l is called the penetration length defined as 1/β
√

2ω =√
TP/πS where T is the transmissivity T = Kb, and P is the

wave period defined as P = 2π/ω.
The data of the numerical experiments are tabulated in Table 1.
Figure 2 shows very good agreement between the numeri-

cal simulations and the analytical solution. Various tests of the
model under different boundary conditions give also very good
agreement (Lebreton, 2003).

Table 1 Simulation parameters used in flow computation

Parameter Numerical value
Domain dimensions 200 m × 50 m
Domain discretization 1.0 m × 1.0 m
Time step 0.5 day
Upstream fixed head 20 m

boundary
Downstream boundary Given function
Constant aquifer thickness 10 m
Homogeneous hydraulic 10 m/day

conductivity
Accuracy in computation 0.001

(sum of head residuals)
No. of time steps 50 steps (25 days)
Storage coefficient 0.00001, 0.0001, 0.001, 0.01, 0.1
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Figure 2 Head profiles along the aquifer length. Dots: numerical results, solid lines: analytical results. The downstream water level is a cosine
function with an amplitude of 5 m and with different wave periods: 1, 5, 10 days. Aquifer characteristics: length = 300 m, S = 0.01.

The transport of solute in homogeneous isotropic aquifer
under advection and dispersion processes is given by (Bear,
1979),

∂C

∂t
+ ∂

∂x
(VxC) = ∂

∂x

(
D0,xx

∂C

∂x

)
+ ∂

∂y

(
D0,yy

∂C
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)

where C is the solute concentration, Vx is the Darcy’s velocity
given by Vx(x, t) = −K∇h(x, t)/ε, where ε is the aquifer poros-
ity and D0,xx and D0,yy are pore-scale dispersion coefficients
given by,

D0,xx = Deff + αL|Vx| and D0,yy = Deff + αT|Vx|
where αL is the longitudinal dispersivity, αT is the lateral disper-
sivity, and Deff is the diffusion coefficient which is neglected in
our case.

The transport model is solved using the particle tracking
random walk technique (Uffink, 1990),

Xn+1
p = Xn

p + Vx�t + ∂Dxx

∂x
�t + Z

√
2αL|Vx|�t

Yn+1
p = Yn

p + ∂Dyy

∂y
�t + Z′√2αT|Vx|�t

where Xn+1
p and Yn+1

p are the new x- and y-coordinate of
the particle p, Xn

p and Yn
p are the old x- and y-coordinate

of the particle p, Vx�t is the advective movement of the particle
in the x-direction, and Z and Z′ are two independent random
numbers drawn from normal distribution.

The procedure to solve both flow and transport equations is
as follows: at a given time step, the corresponding groundwater

Table 2 Transport simulation parameters

Transport simulation parameters Values
Location of the injection x = 10 m y = −25 m
Size of the source of contaminant 1 m × 1 m
Pore-scale longitudinal dispersivity αL = 0.5 m
Pore-scale lateral dispersivity αT = 0.05 m
Porosity ε = 0.4
Injected mass 2500 g
Number of particles 100,000
Time step �t = 1 day

head is computed and then differentiated to compute the spatial
variation of the velocity and then solve the above transport equa-
tion each time step with its local velocity field for each particle
to compute the displacements of the particles and the particles
spatial moments. Proceed with the next time step and repeat the
computation.

3 Sensitivity analysis of model parameters and results

3.1 Simple signal with one period

The period of the fluctuations of the downstream water level
affects the oscillations of the hydraulic heads and therefore the
velocities within the aquifer. Long periods (or slow fluctuations)
yield oscillations of the hydraulic head with a greater magnitude
than short periods do, and this influence is propagated even far
from the fluctuating boundary. This behavior can be observed
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in Fig. 2 where several flow simulations were carried out with
different periods. It is also obvious that the penetration length
l = √

TP/πS is the factor that control oscillations. The depen-
dence of the physical response on the penetration length has also
been addressed by Townley (1995) for a quite similar case. He
shows that for a one-dimensional finite aquifer with a no-flow
boundary at one side and periodic fluctuations on the other side,
the amplitude and the propagation of the hydraulic head fluctu-
ations depend on the ratio d/l which is the length of the aquifer
over the penetration length.

3.2 Compound signal with two periods

A numerical simulation was performed in order to study the
influence of fast oscillations (high frequency) superimposed
over slow oscillations (low frequency) on disperion (e.g. daily
fluctuations of the river water level due to tides plus monthly fluc-
tuations due to rainfall). A periodical fluctuation was imposed
at the downstream boundary: the signal is given by, h(d, t) =
20 cos(2πt/40) + cos(2πt/2). Oscillations of large and short
periods are observed on the hydraulic head and Darcy’s velocity
over the entire length of the aquifer. Particles were injected in this
flow field and results of the spatial moments (Fig. 3) show that
short period oscillations vanish completely, while large period
oscillations are still visible.

Figure 3 Spatial moments of the contaminant plume for the case of fast fluctuations (high frequency) superimposed over slow oscillations
(low frequency).

3.3 Influence of storativity

A fluctuating head at the right boundary has been applied while
keeping the left one at a constant water level for aquifers of dif-
ferent storativity. The downstream level is defined as follows:
h(d, t) = 20 × cos(2πt/20). Figure 4 shows the mean displace-
ment, the longitudinal and lateral variances of the plume. For
small storativity, the mean and variances oscillate around the
steady state case. However, for high strotativity (S = 0.1) the
plume centroid is retarded due to the slow response of the ground-
water head and consequently the Darcy’s velocity. The same
holds for the variance, however, the variance shows high oscilla-
tions when the plume travels towards the downstream boundary.
It is important to note that the variance sometimes decreases (see
Fig. 4 top right corner at late times). This behavior is due to the fact
that particles at front of the plume may encounter negative veloc-
ities (moving towards upstream) whereas plume tail may be in
a location with positive velocity (moving towards downstream).
This may lead to shrinking of the plume and consequently reduc-
tion of the plume variance. This effect can be strongly shown in
the dispersion coefficients Dxx and Dyy (Fig. 5). The dispersion
coefficient is calculated as,

Dxx(t) = 1

2

dσ2
xx(t)

dt
, Dyy(t) = 1

2

dσ2
yy(t)

dt
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Figure 4 Spatial moments of the contaminant plume for different storativity values. The downstream water level fluctuates with a period of 20 days
and the amplitude is 20 m. Aquifers characteristics: length = 300 m.

Figure 5 Temporal variation of the longitudinal and transverse dispersion coefficients for the different storativity values. The downstream water level
fluctuates with a period of 20 days and the amplitude is 20 m.

where, σ2
xx(t) is the plume second moment in the longitudinal

direction and σ2
yy(t) is the plume second moment in the lateral

direction.
The figure shows an amplification of the dispersion coeffi-

cient when the plume goes closer to the fluctuating boundary for
S = 0.1.

3.4 Influence of the amplitude of fluctuations at the
downstream boundary

Solute transport is simulated for different amplitude of the
fluctuation of the downstream boundary. Three amplitudes are
studied: the upstream level is chosen at 1, 3, and 20 m. The



6 Elfeki et al.

downstream level is a cosine function of amplitude of ±1, ±3
and ±20 m, respectively, oscillating around a specified level 0 m,
such that the mean head difference between boundaries is equal
to 1, 3, and 20 m and the corresponding mean head gradients,
〈Jx〉, are 0.003, 0.01 and 0.06, respectively. Results are com-
pared with the corresponding steady state cases having the same
mean head gradients (Figs 6 and 7). The storativity was cho-
sen small (S = 0.001) such that the fluctuations don’t die out
inside the aquifer, so when the response of the aquifer is almost

Figure 6 Evolution of plume spatial moments for three different mean head gradients (0.003, 0.01 and 0.06). The downstream water level fluctuates
with a period of 20 days (S = 0.001).

Figure 7 Temporal variation of longitudinal (left) and lateral (right) dispersion coefficients for the three different mean head gradients (〈Jx〉 = 0.003,
0.01 and 0.06).

at maximum. The results show that oscillations occur around
the steady state case. For small fluctuations (i.e 〈Jx〉 = 0.003
and 0.01), the oscillations are very close to the steady state
case. In the steady state case, the dispersion coefficient can be
computed as, D0,xx = αL|Vx|. Using a longitudinal dispersiv-
ity αL = 0.5 m and Darcy’s law, Vx = (K/ε)(�h/Lx), the
dispersion coefficient is computed for head differences equal
to 1, 3, and 20 m. Results are 0.04, 0.125 and 0.83 m2/day,
respectively.
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4 Conclusions

Comparison of the numerical model with analytical solutions
has shown that the model provides a good representation of
the aquifer response (hydraulic head) when oscillating flow
conditions are imposed on the boundary. The response of a
homogeneous aquifer under periodical forcing is controlled by
the ratio d/l = √

πSd2/TP , which is the length of the aquifer
over the penetration length, where S is the storativity, T the
transmissivity and P is the period of fluctuations. Thus S, P ,
and T are factors that influence the propagation of oscillations
as well as the decay of the amplitude of variation within the
aquifer. It has been shown that when this ratio d/l is small,
the propagation of the oscillations and their amplitude are
significant.

The amplitude of oscillations has strong impact on the
transport of contaminant only if the amplitude of oscillations
is relatively large. For relatively, small oscillations, results
are close to steady state conditions. Transient conditions may
become more important issue in coastal aquifers or tidal rivers
when tidal amplitudes are relatively high (e.g. for the tidal
parameters applied in this study). This can have a strong
effect on the transport of solute or saltwater intrusion. This
conclusion supports the one-dimensional results by Yim and
Mohsen (1991).

Simulations under oscillating flow conditions have shown that
the plume spatial moments fluctuate periodically around its corre-
sponding steady state when the storativity tends to zero. However,
when the storativity is relatively high, the plume spatial moments
show delay when compared with the steady state case.

The longitudinal and lateral dispersion coefficients exhibit
fluctuations around the steady state condition in the case of low
strorativity. In the case of high storativity, fluctuations also occur
around the steady state but with an amplification of the disper-
sion coefficients when the plume moves closer to the fluctuating
boundary. This phenomenon is due to the fact that at high water
level, groundwater flow can simultaneously reversed, introduc-
ing flow into the aquifer while the upstream part of the aquifer
flows towards the water body (in the right side boundary). This
leads to shrinking of the plume and consequently reduction in the
plume size.
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