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A new algorithm for solving the general nonlinear third-order differential equation is developed
by means of a shifted Jacobi-Gauss collocation spectral method. The shifted Jacobi-Gauss points
are used as collocation nodes. Numerical examples are included to demonstrate the validity and
applicability of the proposed algorithm, and some comparisons are made with the existing results.
The method is easy to implement and yields very accurate results.

1. Introduction

During the past three decades, there has been a remarkable growth of interest in problems
associated with systems of linear, nonlinear, and algebraic ordinary differential equations
with split initial or boundary conditions. Throughout engineering and applied science, we
are confronted with nonlinear or algebraic initial (two-point boundary) value problems
that cannot be solved by analytical methods. With this interest in finding solutions to
particular nonlinear initial (two-point boundary) value problems, came an increasing need
for techniques capable of rendering relevant profiles. Although considerable progress has
been made in developing new and powerful procedures, notably in the fields of fluid and
celestial mechanics and chemical and control engineering, much remain to be done.

In an initial value problem, we have to approximately determine in some interval t0 ≤
t ≤ T that solution u(t) of a third-order differential equation

∂3t u(t) = f
(
t, u(t), ∂tu(t), ∂2t u(t)

)
, (1.1)


