Modulatory effect of cod liver oil on bone mineralization in ovariectomized female Sprague Dawley rats

Said S Moselhy¹,², Abdulrahman L Al-Malki¹, Taha A Kumosani¹ and Jalaluddin A Jalal¹

Abstract
Osteoporosis represents a major public health problem through its association with fragility fractures, primarily of the hip, spine and distal forearm. The risk of osteoporosis increased in postmenopausal women due to decline in estrogen levels. Replicable hormone therapy is associated with undesirable side effects. Cod liver oil (CLO) is a rich source of docosahexaenoic acid eicosapentaenoic acid linolenic acid and vitamins A, E and D. In this study, the effect of CLO will be tested in the prevention of bone loss in the ovariectomized (OVX) female rats. One group of OVX rats (n = 12) received an estrogen implantation at the time of operation and the second group was supplemented orally with CLO (200 μl/kg body weight) daily for 8 weeks. At the end of the experiment, blood was analysed for serum calcium, phosphorous, bone-specific alkaline phosphatase, osteocalcin and estrogen and femur for calcium determination. Estrogen implantation as well as CLO supplementation in OVX rats increased the calcium level in femur as compared with sham rats (p < 0.05). It is concluded that supplementation of CLO have a positive effect on bone mineralization in rat, and this could offer a new strategy to avoid the side effects of replaceable hormonal therapy.

Keywords
Cod liver oil, OVX rats, osteoporosis

Introduction
Osteoporosis represents a major public health problem through its association with fragility fractures, primarily of the hip, spine and distal forearm (Buck et al., 1994). Some risk factors for fragility fracture are associated with bone mineral density (BMD), gender, low dietary calcium intake and vitamin D deficiency (Lapasata, 1995). However, a number of other factors such as, age, high bone turnover, neuromuscular disorders, glucocorticoid therapy, family history of hip fracture, low body weight, cigarette smoking and excess alcohol consumption contribute significantly to the risk of fracture (Horrobin and Manku, 1990).

Ovariectomized (OVX) female rats shows a marked reduction in endogenous estrogen concentrations and induces bone remodeling abnormalities that augment bone loss and increase the risk of developing osteopenia (Simopoulos, 1991).

1Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
2Biochemistry Department, Ain Shams University, Cairo, Egypt

Corresponding author:
Said S Moselhy, Biochemistry Department, Ain Shams University, Cairo 22015, Egypt
Email: moselhy6@hotmail.com