Dr.Eman Zakaria Hegazy   
Quantum Mechanics and Statistical Thermodynamics Lecture 17

Approximation Methods
· We showed before that the Schrödinger equation cannot be solved exactly for any atom or molecule more complicated than the hydrogen atom.

· Approximation methods can be used to solve the Schrödinger   equation to almost any desired accuracy.
Approximation methods

The Variational Method                             Perturbation Theory                      
1- The Variational Method Provides an Upper Bound to the Ground – State Energy of a System

- We will first illustrate the variational method. Consider the ground state of some arbitrary system.
- The ground state wave function ψ0 and E0 satisfy the Schrödinger equation
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Multiply Equation (1) by 
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And integrate over all the space to obtain
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where 
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 represents the appropriate volume element. We have not set the denominator equal unity in equation (2) to allow for the possibility ψ0 is not normalized.
- If we substitute any other function ϕ for ψ0 in equation 2 and calculate the corresponding energy according to 
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then Eϕ will be greater than the ground- state energy E0. In an equation, we have the variational principle 
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Where the equality holds only if 
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 , the exact wave function.

The variational principle says that we can calculate an upper bound to E0 by using any trial function we wish.  The closer  
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 in some sense , the closer 
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. We can choose a trial function 
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 such that it depends upon some arbitrary parameters, … called Varaitational parameters. the energy  also will depend  upon  these varitional parameters , and equation  (4)will read:
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Now we can minimize 
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  with respect to each of varitional parameters and there by determine the best possible ground-state energy that can be obtained from our trial wave function.

As a specific example, consider the ground state of the hydrogen atom. Although  we know  that we  can solve  this problem exactly , let’s  assume  that  we cannot  and use  the variational method. We will compare our varitional result to the exact result. Because l=0 in the ground state, the Hamiltonian operator is:
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Even if we did not know  the  exact  solution, we would  expect  that  the wave  function decays  to zero with increasing  r.  consequently, as a trial function, we  will try a Gaussian of the form 
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where  is a variational parameter. By a straight forward calculation we can show.
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and that
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Therefore from equation 3:
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We now minimize E () with respect to by differentiating with respect to  and setting the result equal to zero. We solve the equation:
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For  to give
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As the value of  that minimize  E(). Substituting equation 8  back in equation 7
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Compared with exact value
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Note that Emin> Eo  as the variational theorem assures us.

Example (1)

Use a trial function of the form e-αr to calculate the ground state energy of a hydrogen atom.

Solution:

The Hamiltonian operator for the ground state energy of hydrogen atom is given by equation
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numerator = 4π
[image: image29.wmf]2

ˆ

rr

eHerdr

aa

--

ò


                   = 
[image: image30.wmf]22

22

0

00

2

(2)

rr

e

e

rredrerdr

m

aa

pa

a

e

¥¥

--

--

òò

h


                   = 
[image: image31.wmf]2

2

e

m

pa

h



 EMBED Equation.DSMT4  [image: image32.wmf]2

232

0

221

(2)(2)(2)

e

a

aaea

éù

--

êú

ëû


                   = 
[image: image33.wmf]22

2

0

24

e

e

m

p

aea

-

h


Denominator =
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and  so 
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Setting dE/d =0
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And substituting  this result back into E() gives
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This happens to be the exact ground state  energy of a hydrogen atom. 
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