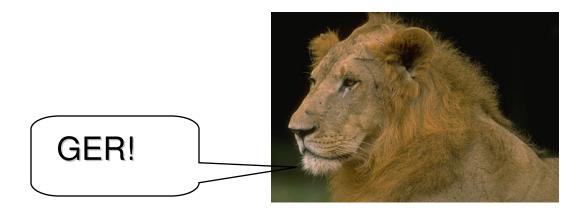
ELECTROCHEMISTRY

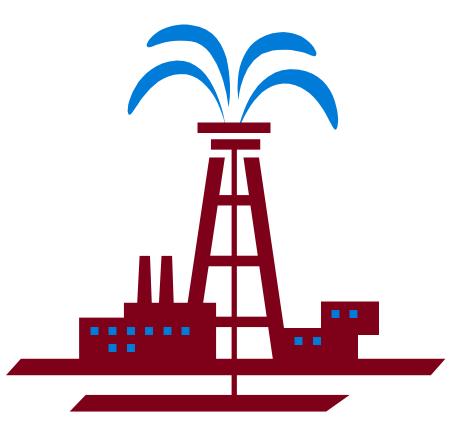
Electron Transfer Reactions

- Electron transfer reactions are oxidationreduction or redox reactions.
- Results in the generation of an electric current (electricity) or be caused by imposing an electric current.
- Therefore, this field of chemistry is often called ELECTROCHEMISTRY.



- OXIDATION—loss of electron(s) by a species; increase in oxidation number; increase in oxygen.
- REDUCTION—gain of electron(s); decrease in oxidation number; decrease in oxygen; increase in hydrogen.
- OXIDIZING AGENT—electron acceptor; species is reduced.
- **REDUCING AGENT**—electron donor; species is oxidized.

You can't have one... without the other!


- Reduction (gaining electrons) can't happen without an oxidation to provide the electrons.
- You can't have 2 oxidations or 2 reductions in the same equation. Reduction has to occur at the cost of oxidation

LEO the lion says GER!

Another way to remember

OXIDATION-REDUCTION REACTIONS

Direct Redox Reaction

Oxidizing and reducing agents in direct contact.

Cu(s) + 2 Ag⁺(aq) ---> Cu²⁺(aq) + 2 Ag(s)

OXIDATION-REDUCTION REACTIONS

Indirect Redox Reaction

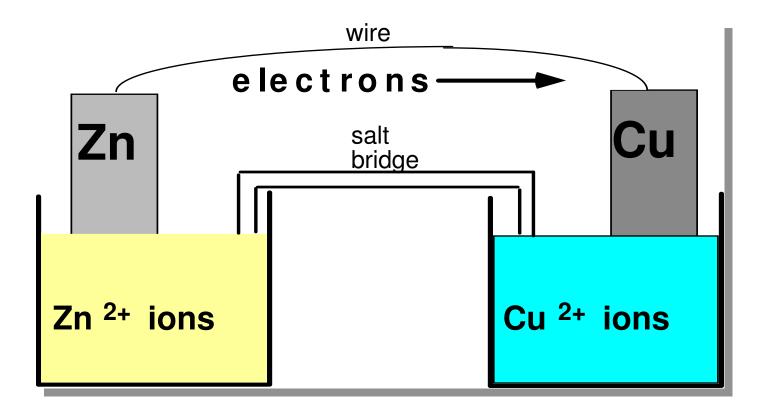
A battery functions by transferring electrons through an external wire from the reducing agent to the oxidizing agent.

Why Study Electrochemistry?

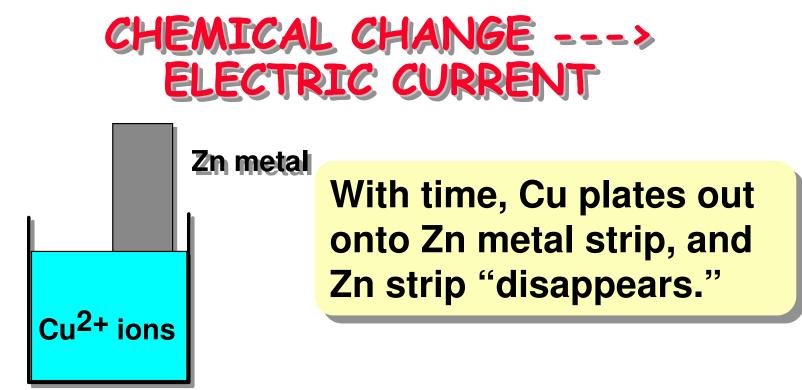
- Batteries
- Corrosion
- Industrial production of chemicals such as Cl₂, NaOH, F₂ and AI
- Biological redox reactions

The heme group

- An apparatus that allows a redox reaction to occur by transferring electrons through an external connector.
- voltaic or galvanic cell: it is a product favored reaction, where chemical reaction occurs spontaneously and produce electric current
- Examples: Le Clanche cell Zn/MnO₂ used in watches and Hydrogen fuel cell H₂/O₂ used in space crafts and cars.
- Electrolytic cell: it is a reactant favored reaction, where chemical reaction occurs non- spontaneously by using electric current
- Examples: The cell used in production of chlorine

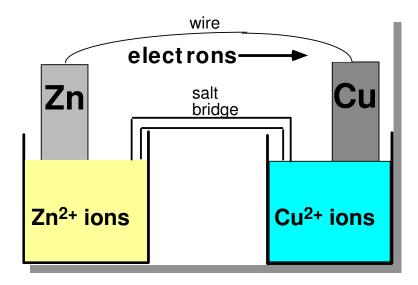

Batteries are voltaic cells

Lead storage battery

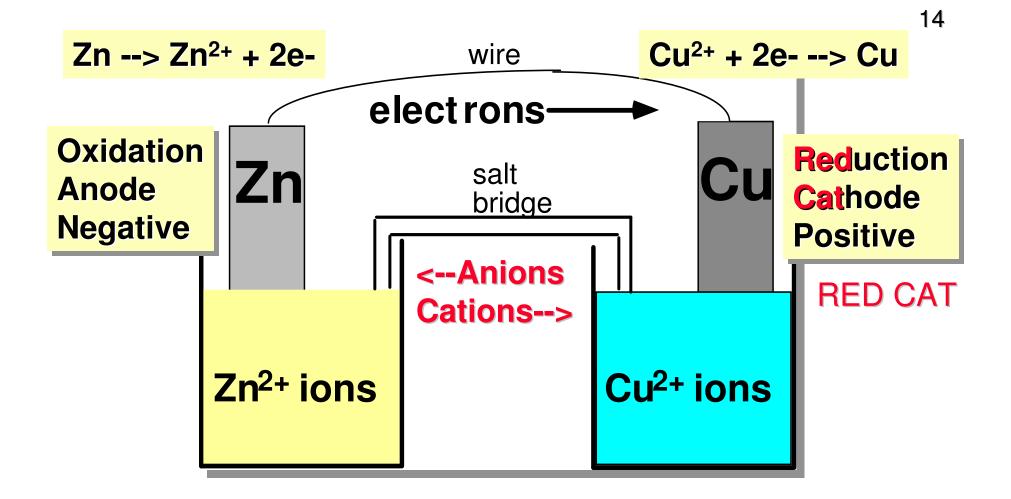


- It is Pb-PbO₂-H₂SO₄ cell.
- It is working as galvanic cell when it is being used as a battery in your car (Discharging and produce electricity).
- It is working as an electrolytic cell when it is being charged.

Basic Concepts of Electrochemical Cells

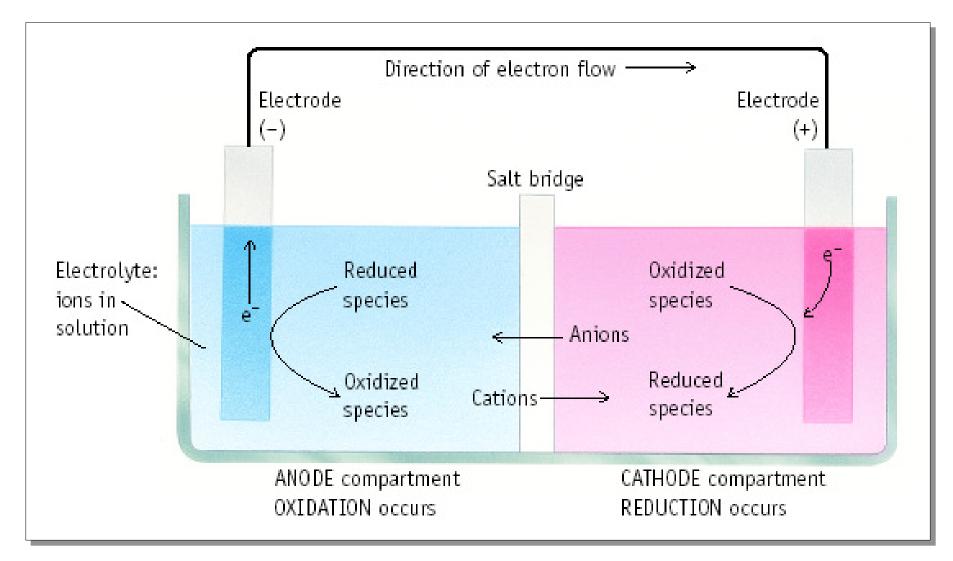

Anode Cathode

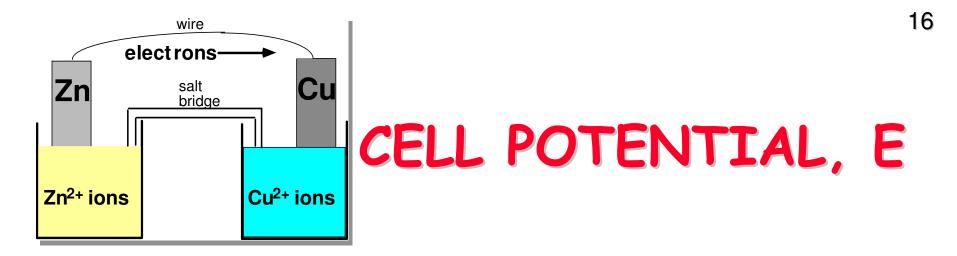
Zn is oxidized and is the reducing agent
Zn(s) ---> Zn²⁺(aq) + 2eCu²⁺ is reduced and is the oxidizing agent
Cu²⁺(aq) + 2e- ---> Cu(s)


CHEMICAL CHANGE ---> ELECTRIC CURRENT

•To obtain a useful current, we separate the oxidizing and reducing agents so that electron transfer occurs thru an external wire.

This is accomplished in a GALVANIC or VOLTAIC cell. http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/galvan5.swf


A group of such cells is called a **battery**.

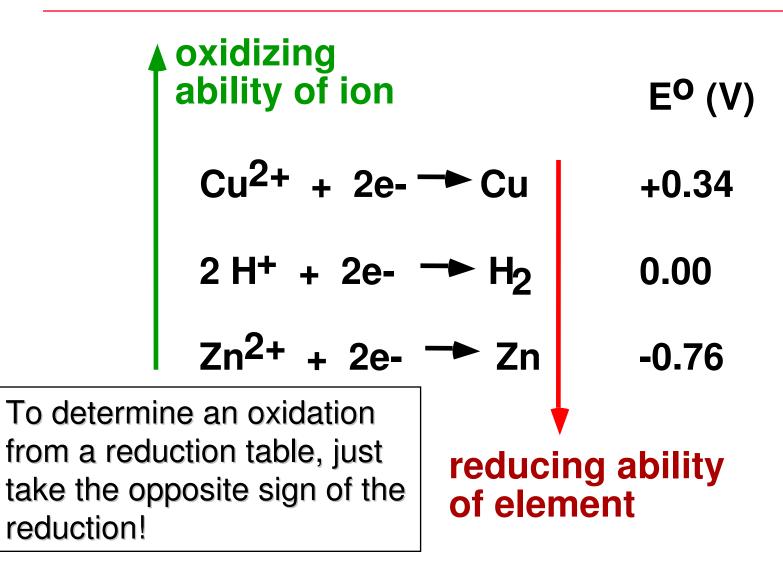


•Electrons travel thru external wire.

•Salt bridge allows anions and cations to move between electrode compartments.

Terms Used for Voltaic Cells

- For Zn/Cu cell, potential is +1.10 V at 25 °C and when [Zn²⁺] and [Cu²⁺] = 1.0 M.
- This is the STANDARD CELL POTENTIAL, E^o
- —a quantitative measure of the tendency of reactants to proceed to products when all are in their standard states at 25 °C.


Calculating Cell Voltage

 Balanced half-reactions can be added together to get overall, balanced equation.

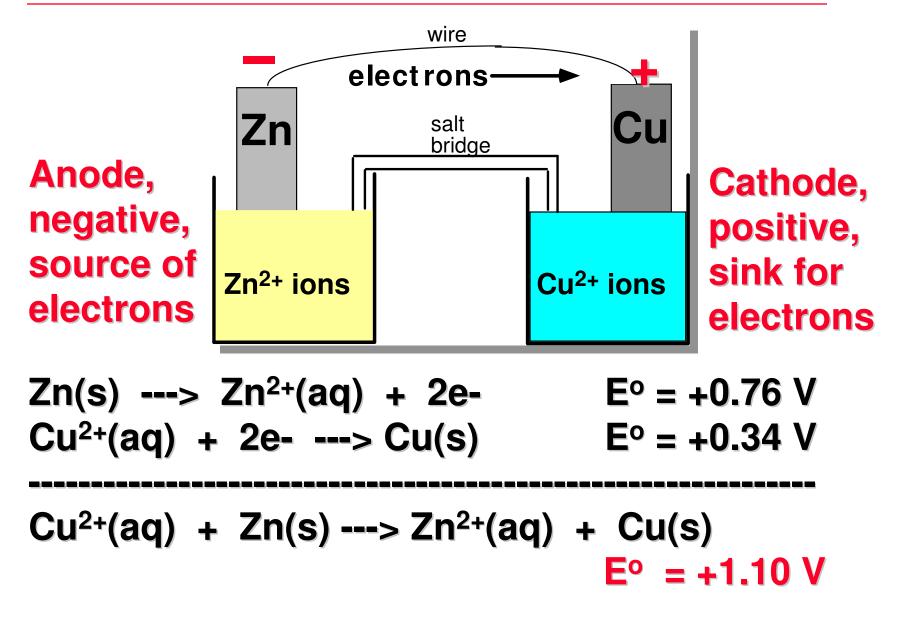
$$Zn(s) ---> Zn^{2+}(aq) + 2e-$$

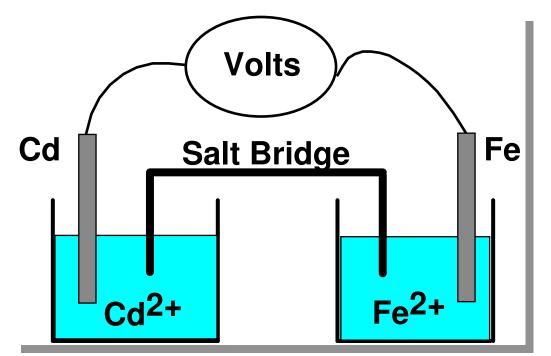
 $Cu^{2+}(aq) + 2e- ---> Cu(s)$
 $Cu^{2+}(aq) + Zn(s) ---> Zn^{2+}(aq) + Cu(s)$

If we know E^o for each half-reaction, we could get E^o for net reaction.

TABLE OF STANDARD REDUCTION POTENTIALS

Zn/Cu Electrochemical Cell



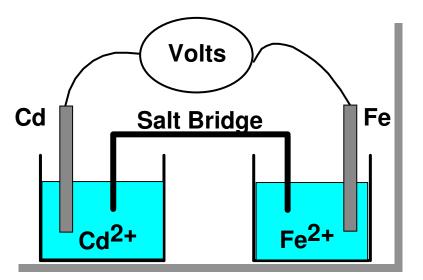

 Table 20.1
 Standard Reduction Potentials in Aqueous Solution

 at 25 °C*

	Reduction Half-Reaction		<i>E</i> ° (V)	
	$F_2(g) + 2 e^-$	\longrightarrow 2 F ⁻ (aq)	+2.87	
	H ₂ O ₂ (aq) + 2 H ⁺ (aq) + 2 e ⁻	\longrightarrow 2 H ₂ 0(ℓ)	+1.77	
	PbO ₂ (s) + SO ₄ ²⁻ (aq) + 4 H ⁺ (aq) + 2 e ⁻	$\longrightarrow PbSO_4(s) + 2 H_2O(\ell)$	+1.685	
	MnO4 ⁻ (aq) + 8 H ⁺ (aq) + 5 e ⁻	$\longrightarrow Mn^{2+}(aq) + 4 H_2O(\ell)$	+1.52	
	Au ³⁺ (aq) + 3 e ⁻	$\longrightarrow Au(s)$	+1.50	
	Cl ₂ (g) + 2 e ⁻	\longrightarrow 2 Cl ⁻ (aq)	+1.360	
	Cr ₂ O ₇ ²⁻ (aq) + 14 H ⁺ (aq) + 6 e ⁻	\longrightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O (ℓ)	+1.33	
	$0_2(g) + 4 H^+(aq) + 4 e^-$	$\longrightarrow 2 H_2O(\ell)$	+1.229	
	$Br_2(\ell) + 2 e^-$	\longrightarrow 2 Br ⁻ (aq)	+1.08	
	NO ₃ ⁻ (aq) + 4 H ⁺ (aq) + 3 e ⁻	$\longrightarrow NO(g) + 2 H_2O(\ell)$	+0.96	
_↓ agents	$OCl^{-}(aq) + H_2O(\ell) + 2 e^{-}$	$\longrightarrow Cl^{-}(aq) + 2 OH^{-}(aq)$	+0.89	nts
	9 Hg²+(aq) + 2 e ⁻	\longrightarrow Hg(ℓ)	+0.855	age
ing	$^{\circ}$ Ag ⁺ (aq) + e ⁻	$\longrightarrow Ag(s)$	+0.80	ing
idiz	$Hg_2^{2^+}(aq) + 2 e^-$	\longrightarrow 2 Hg(ℓ)	+0.789	duc
۲ ۆ	$Fe^{3+}(aq) + e^{-}$	$\longrightarrow Fe^{2+}(aq)$	+0.771	f re
-0 4	I ₂ (s) + 2 e ⁻	\longrightarrow 2 I ⁻ (aq)	+0.535	h o
ngt	$0_2(g) + 2 H_2O(\ell) + 4 e^-$	\longrightarrow 4 OH ⁻ (aq)	+0.40	sugt
Increasing strength of oxidizing agents	Cu ²⁺ (aq) + 2 e ⁻	\longrightarrow Cu(s)	+0.337	stre
	• Sn ⁴⁺ (aq) + 2 e ⁻	$\longrightarrow Sn^{2+}(aq)$	+0.15	ing
easi	2 H ⁺ (aq) + 2 e ⁻	$\longrightarrow H_2(g)$	0.00	← Increasing strength of reducing agents
ncre	$Sn^{2+}(aq) + 2 e^{-}$	\longrightarrow Sn(s)	-0.14	
	Ni ^{z+} (aq) + 2 e ⁻	$\longrightarrow Ni(s)$	-0.25	
	V ³⁺ (aq) + e ⁻	$\longrightarrow V^{2+}(aq)$	-0.255	
	PbSO ₄ (s) + 2 e ⁻	$\longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.356	
	$Cd^{2+}(aq) + 2 e^{-}$	$\longrightarrow Cd(s)$	-0.40	
	Fe ²⁺ (aq) + 2 e ⁻	\longrightarrow Fe(s)	-0.44	
	$Zn^{2+}(aq) + 2 e^{-}$	\longrightarrow Zn(s)	-0.763	
	$2 H_2 O(\ell) + 2 e^-$	$\longrightarrow H_2(g) + 2 \text{ OH}^-(aq)$	-0.8277	
	$Al^{3+}(aq) + 3 e^{-}$	$\longrightarrow Al(s)$	-1.66	
	Mg ²⁺ (aq) + 2 e ⁻	$\longrightarrow Mg(s)$	-2.37	
	Na ⁺ (aq) + e ⁻	$\longrightarrow Na(s)$	-2.714	
	$K^{+}(aq) + e^{-}$	$\longrightarrow K(s)$	-2.925	
	Li ⁺ (aq) + e ⁻	\longrightarrow Li(s)	-3.045	

*In volts (V) versus the standard hydrogen electrode.

E° for a Voltaic Cell


Table 20.1 Standard Reduction Potentials in Aqueous Solution at 25 °C*

Reduction Half-Reaction		<i>E</i> ° (V)	
$F_2(g) + 2 e^-$	$\longrightarrow 2 F^{-}(aq)$	+2.87	
$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	\longrightarrow 2 H ₂ 0(ℓ)	+1.77	
PbO ₂ (s) + SO ₄ ²⁻ (aq) + 4 H ⁺ (aq) + 2 e ⁻	$\longrightarrow PbSO_4(s) + 2 H_2O(\ell)$	+1.685	
MnO ₄ ⁻ (aq) + 8 H ⁺ (aq) + 5 e ⁻	$\longrightarrow Mn^{2+}(aq) + 4 H_2O(\ell)$	+1.52	
Au ³⁺ (aq) + 3 e ⁻	$\longrightarrow Au(s)$	+1.50	
Cl ₂ (g) + 2 e ⁻	\longrightarrow 2 Cl ⁻ (aq)	+1.360	
$Cr_2 0_7^{2-}(aq) + 14 H^+(aq) + 6 e^-$	\longrightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O (ℓ)	+1.33	
$0_2(g) + 4 H^+(aq) + 4 e^-$	$\longrightarrow 2 H_2O(\ell)$	+1.229	
Br ₂ (ℓ) + 2 e ⁻	\longrightarrow 2 Br ⁻ (aq)	+1.08	
NO3 ⁻ (aq) + 4 H ⁺ (aq) + 3 e ⁻	$\longrightarrow NO(g) + 2 H_2O(\ell)$	+0.96	
월 OCL [−] (aq) + H ₂ O(ℓ) + 2 e [−]	$\longrightarrow Cl^{-}(aq) + 2 OH^{-}(aq)$	+0.89	μt
⊕ Hg ²⁺ (aq) + 2 e [−]	\longrightarrow Hg(ℓ)	+0.855	ane l
을 Ag ⁺ (aq) + e ⁻	$\longrightarrow Ag(s)$	+0.80	E
₩ Hg2 ²⁺ (aq) + 2 e ⁻	$\longrightarrow 2 \text{ Hg}(\ell)$	+0.789	1 icit
ŏ Fe ³⁺ (aq) + e [−]	\longrightarrow Fe ²⁺ (aq)	+0.771	Increasing strength of reducing agents
2 I ₂ (s) + 2 e ⁻	$\longrightarrow 2 I^{-}(aq)$	+0.535	
₽ 0 ₂ (g) + 2 H ₂ 0(ℓ) + 4 e ⁻	\longrightarrow 4 OH ⁻ (aq)	+0.40	not
$\begin{array}{l} & g_{2} & 0(1^{-}(a_{3}) + H_{2}0(\ell) + 2 e^{-} \\ g_{2}^{0} & g_{2}^{0} + 2 e^{-} \\ g_{2}^{0} & g_{3}^{0} + 2 e^{-} \\ g_{2}^{0} & g_{3}^{0} + 2 e^{-} \\ g_{2}^{0} & g_{3}^{0} + 2 e^{-} \\ g_{3}^{0} & g_{3}^{0} & g_{3}^{0} + 2 e^{-} \\ g_{3}^{0} & g_{3}^{0} & g_{3}^{0} + 2 e^{-} \\ g_{3}^{0} & g_{3}^{0} & g_{3}^{0} + 2 \\ g_{3}^{0} & g_{3}^{0} $	\longrightarrow Cu(s)	+0.337	tre
Sn ⁴⁺ (aq) + 2 e [−]	$\longrightarrow Sn^{2+}(aq)$	+0.15	E
8 2 H ⁺ (aq) + 2 e ⁻	$\longrightarrow H_2(g)$	0.00	paci
ਊ Sn ²⁺ (aq) + 2 e [−]	\longrightarrow Sn(s)	-0.14	DCr.
Ni ²⁺ (aq) + 2 e ⁻	$\longrightarrow Ni(s)$	-0.25	1
$V^{3+}(aq) + e^{-}$	$\longrightarrow V^{2+}(aq)$	-0.255	
PbSO ₄ (s) + 2 e ⁻	$\longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.356	
Cd ²⁺ (aq) + 2 e ⁻	$\longrightarrow Cd(s)$	-0.40	
Fe ²⁺ (aq) + 2 e	\longrightarrow Fe(s)	-0.44	
Zn ²⁺ (aq) + 2 e	\longrightarrow Zn(s)	-0.763	
2 H ₂ O(ℓ) + 2 e ⁻	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.8277	
Al ³⁺ (aq) + 3 e ⁻	$\longrightarrow Al(s)$	-1.66	
Mg ²⁺ (aq) + 2 e ⁻	$\longrightarrow Mg(s)$	-2.37	
Na ⁺ (aq) + e ⁻	$\longrightarrow Na(s)$	-2.714	
K ⁺ (aq) + e ⁻	$\longrightarrow K(s)$	-2.925	
Li ⁺ (aq) + e ⁻	\longrightarrow Li(s)	-3.045	

Cd> Cd ²⁺ + 2e-	Fe> Fe ²⁺ + 2e-
or	or
Cd ²⁺ + 2e> Cd	Fe ²⁺ + 2e> Fe

All ingredients are present. Which way does reaction proceed?

E° for a Voltaic Cell

From the table, you see

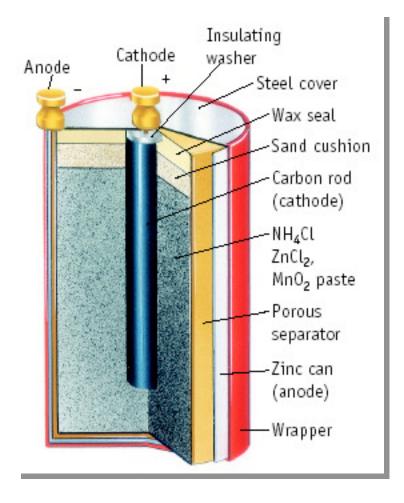
- Fe is a better reducing agent than Cd
- Cd²⁺ is a better oxidizing agent than Fe²⁺

More About
Calculating Cell VoltageAssume I: ion can reduce water. $2 H_2O + 2e^- ---> H_2 + 2 OH^ 2 H_2O + 2e^- ---> H_2 + 2 OH^ 2 I^- --> I_2 + 2e^-$ Cathode
Anode $2 I^- + 2 H_2O --> I_2 + 2 OH^- + H_2$

23

Assuming reaction occurs as written, $E^{\circ} = E^{\circ}_{cat} + E^{\circ}_{an} = (-0.828 \text{ V}) - (-+0.535 \text{ V}) = -1.363 \text{ V}$ Minus E° means r×n. occurs in opposite direction (the connection is backwards or you are recharging the battery)

Charging a Battery



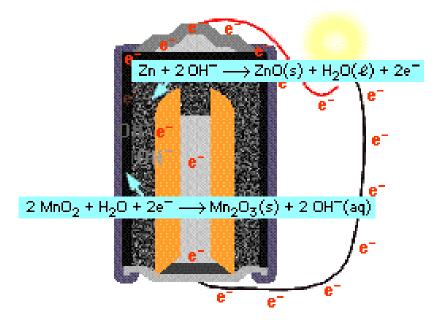
When you charge a battery, you are forcing the electrons backwards (from the + to the -). To do this, you will need a higher voltage backwards than forwards. This is why the ammeter in your car often goes slightly higher while your battery is charging, and then returns to normal.

In your car, the battery charger is called an alternator. If you have a dead battery, it could be the battery needs to be replaced OR the alternator is not charging the battery properly.

Dry Cell Battery

Anode (-)

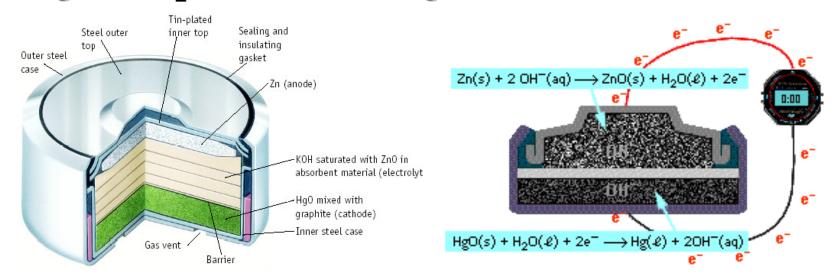
Zn ---> Zn²⁺ + 2e-


Cathode (+)

$$2 \text{ NH}_4^+ + 2e_- ---> 2 \text{ NH}_3 + \text{H}_2$$

Alkaline Battery

Nearly same reactions as in common dry cell, but under basic conditions.


Anode (-): $Zn + 2 OH^{-} ---> ZnO + H_2O + 2e^{-}$ Cathode (+): $2 MnO_2 + H_2O + 2e^{-} ---> Mn_2O_3 + 2 OH^{-}$

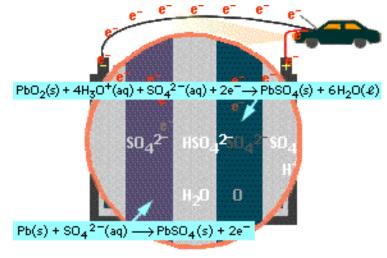
Mercury Battery

Anode:

Zn is reducing agent under basic conditions Cathode:

 $HgO + H_2O + 2e - --> Hg + 2 OH^-$

Lead Storage Battery

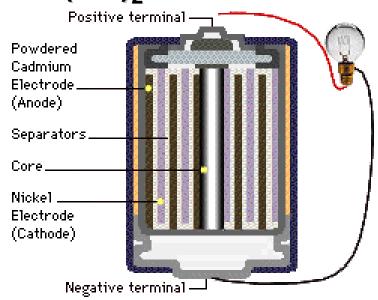

Anode (-) $E^{\circ} = +0.36 V$ $Pb + HSO_4^{-} ---> PbSO_4 + H^+ + 2e^-$ Cathode (+) $E^{\circ} = +1.68 V$ $PbO_2 + HSO_4^{-} + 3 H^+ + 2e^ ---> PbSO_4 + 2 H_2O$

Positive plates:

lead grids filled with Pb0₂ Negative plates:

lead grids filled

with spongy lead



28

Ni-Cad Battery

Anode (-) $Cd + 2 OH^{-} ---> Cd(OH)_{2} + 2e^{-}$ Cathode (+) $NiO(OH) + H_{2}O + e^{-} ---> Ni(OH)_{2} + OH^{-}$

H₂ as a Fuel

(b) A prototype of a hydrogen-powered BMW.

Cars can use electricity generated by H₂/O₂ fuel cells.

H₂ carried in tanks or generated from hydrocarbons

Balancing Equations for Redox Reactions

Some redox reactions have equations that must be balanced by special techniques.

 $MnO_{4}^{-} + 5 Fe^{2+} + 8 H^{+}$ ---> Mn²⁺ + 5 Fe³⁺ + 4 H₂O Mn = +7 Fe = +2 Mn = +2 Fe = +3

Consider the reduction of Ag⁺ ions with copper metal.

$Cu + Ag^+$ --give--> $Cu^{2+} + Ag$

Step 1: Divide the reaction into half-reactions, one for oxidation and the other for reduction.

Ox Cu ---> Cu²⁺

Red Ag⁺ ---> Ag

Step 2: Balance each element for mass. Already done in this case.

Step 3: Balance each half-reaction for charge by adding electrons.

- Ox Cu ---> Cu²⁺ + 2e-
- Red Ag⁺ + e⁻ ---> Ag

Step 4: Multiply each half-reaction by a factor so that the reducing agent supplies as many electrons as the oxidizing agent requires.

Reducing agentCu ---> Cu^{2+} + 2e-Oxidizing agent2 Ag+ + 2 e----> 2 Ag

Step 5: Add half-reactions to give the overall equation.

 $Cu + 2 Ag^{+} ---> Cu^{2+} + 2Ag^{+}$

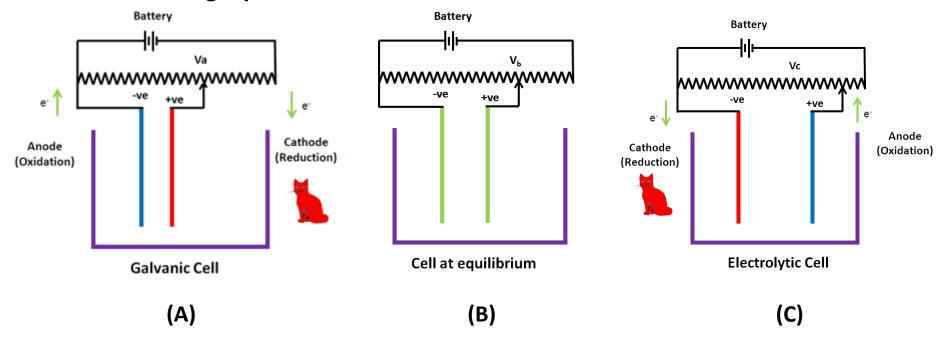
The equation is now balanced for both charge and mass.

Balance the following in acid solution—

- $VO_2^+ + Zn ---> VO^{2+} + Zn^{2+}$
- Step 1: Write the half-reactions
- Ox Zn ---> Zn²⁺
- Red $VO_2^+ ---> VO^{2+}$
- Step 2: Balance each half-reaction for mass.
- Ox Zn ---> Zn²⁺
- Red $2 H^+ + VO_2^+ ---> VO^{2+} + H_2O$

Add H₂O on O-deficient side and add H⁺ on other side for H-balance.

Step 3:Balance half-reactions for charge.Ox $Zn \rightarrow Zn^{2+} + 2e^{-}$ Red $e^{-} + 2 H^{+} + VO_{2}^{+} \rightarrow VO^{2+} + H_{2}O$ Step 4:Multiply by an appropriate factor.Ox $Zn \rightarrow Zn^{2+} + 2e^{-}$ Red $2e^{-} + 4 H^{+} + 2 VO_{2}^{+} + 2e^{-}$ Red $2e^{-} + 4 H^{+} + 2 VO_{2}^{+} + 2H_{2}O$ Step 5:Add balanced half-reactionsZn + 4 H^{+} + 2 VO_{2}^{+} ---> Zn^{2+} + 2 VO^{2+} + 2 H_{2}O


Tips on Balancing Equations

- Never add O₂, O atoms, or O²⁻ to balance oxygen.
- Never add H₂ or H atoms to balance hydrogen.
- Be sure to write the correct charges on all the ions.
- Check your work at the end to make sure mass and charge are balanced.
- PRACTICE!

Measurement of Cell potential

38

The difference in potential between the cathode and anode of a cell can be measured using a potentiostate.

The battery and resistor with a sliding contact is used to apply fraction of potential difference across the slide wire to an electrochemical cell.

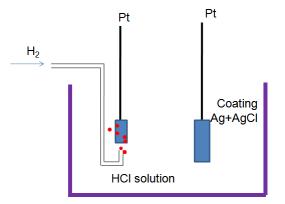
(A)If the applied potential difference (Va) is less than EMF of the cell, the cell work as galvanic cell (discharge spontaneously).

(B)If the applied potential difference (Vb) is equal to EMF of the cell, the current is zero and the cell will be at equilibrium.

(C)If the applied potential difference (Vc) is larger than EMF of the cell, it derives the cell reaction in the reverse direction. The cell now is working as electrolytic cell.

Note:

- 1) The anode in case (A) on left but it is on the right in case (C).
- 2) The definition of anode and cathode in terms of oxidation and reduction are independent of whether a cell is a galvanic cell or an electrolytic cell.
- 3) The terms anode and cathode should not used for the electrodes in an electrochemical cell at equilibrium.

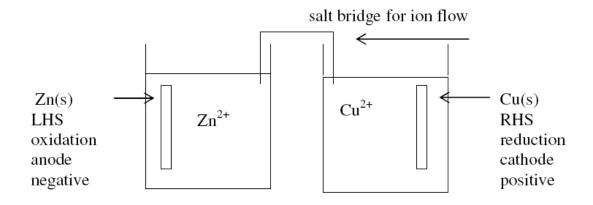

Cell without liquid junction

• Example:

Pt(s)
$$H_{2(g)}$$
 $HCI_{(m)}$ $AgCI_{(s)}$ $Ag_{(s)}$ Pt(s) $H_{2(g)}$ $HCI_{(m)}$ $CI_{2(g)}$ $Pt_{(s)}$

Hg-Na (x_{Na})NaOH_(m)Hg-Na (x_{Na})The vertical lines represent phase boundaries.

Cells of this type can be held equilibrium, and they can give exact thermodynamic treatment.



40

Cell with liquid junction

• Example:

Zn(s) $Zn^{2+}(m_1)$ $Cu^{2+}(m_1)$ Cu(s)Ag(s)AgCl(s) Cl^{-2} Ag^+(m)Ag(s)

It represent a junction between two liquids

It represent a salt bridge (conc. KCI)

- Is necessary to know that when solution in contact can react with each other.
- Cells with liquid junctions are never completely at equilibrium because diffusion occurs at the liquid junction and contributes with an unknown potential.

 The Nernst Equation. Cell reactions must be spontaneous, otherwise there would be no reaction and hence no electron transfer when the circuit is completed. For the general redox reaction

• $aA + bB \longrightarrow cC + dD$

where n electrons are transferred recall that the reaction Gibbs energy is:

$$\Delta_{\rm r}G = \Delta_{\rm r}G^{\,\theta} + RT \ln\left(\frac{a^{\rm c}_{\rm C}a^{\rm d}_{\rm D}}{a^{\rm a}_{\rm A}a^{\rm b}_{\rm B}}\right) = \Delta_{\rm r}G^{\,\theta} + RT \ln Q$$

We can show that :

$\Delta_r G$ = chemical driving force = - nFE = electrical driving force.

For electrons to be transferred there must be a difference in the electric potential between the two parts of the cell. This is similar to the flow of heat which only occurs due to a temperature difference between two points. This potential difference is designated E, the emf of the cell or the electromotive force or the electric potential.

Recall that the maximum non pV work = $\Delta_r G = w_{e,max}$.

Consider the work done when one mole of a cell reaction occurs [the reaction as written occurs N_A times] and nN_A electrons are transferred across the cell where a potential difference E exits. Since each electron carries a charge e =1.602 x 10⁻¹⁹ Coulombs, the total charge transferred across E is nN_Ae

From basic electricity theory:

Electrical work = charge x potential across which charge moves

 $= -nN_A e E$

Thus:

 $\Delta_r G = W_{e,max} = -nN_A e E$

 $eN_A \equiv Faraday \text{ constant} = 1.602 \text{ x } 10^{-19} \text{ Coulombs x } 6.023 \text{ x } 10^{23} \text{ mol}^{-1} = 96490 \text{ C mol}^{-1}$

Thus $\Delta_r G = -nFE$ and also $\Delta_r G^q = -nFE^q$

- where E^q; the standard emf, is the electrical driving force when the reaction mixture is composed of reactants and products present in their standard states. <u>It must be > 0.</u>
- Substituting into the equation for the reaction Gibbs energy gives the Nernst equation.

$$\mathbf{E} = \mathbf{E}^{\mathbf{\theta}} - \frac{\mathbf{RT}}{\mathbf{vF}} \ln \mathbf{Q}$$

 When the Nernst equation is applied to a balanced reaction where the number of electrons transferred is known there are only three things that are unknown: the cell potential E, the standard cell potential E^q and Q which contains concentrations and activity coefficients of the species. If the standard potential is known and the cell potential is measured for a particular concentration then it is possible to get the mean activity coefficient.