
 1

Buffer Overflow Vulnerability Detection in the Binary Code

Shehab Gamal El-Dien, Reda Salama, Ahmed Eshak

shehab@ispofegypt.com, redasalama@hotmail.com, a_issac@sakhr.com

Al-Azhar University, Faculty of Engineering, Computers and Systems Department

Abstract
Nowadays, the Internet plays an important role in

information processing and data exchange. The Internet

is mainly composed of clients, servers, routers, and

software applications. This internet schema is not secure

due to a lot of security holes that already exist in any of

the servers, the clients, the routers or the applications.

One of the most dangerous security holes is Buffer

overflow hole which is responsible for about 35% of the

Internet attacks. A lot of solutions have emerged to detect

buffer overflow security holes and protect against buffer

overflow attacks such as Source Code Static Analysis,

Disabling Stack Execution, Compiler-Based Techniques

and Dynamic Protection solution.

The paper proposes a new solution to pre-detect the

buffer overflow security holes in the binary files. So

doing, the security administrator can pre-detect the

buffer overflow holes in the running applications before

they are exploited by the hackers. Furthermore, the

solution can be used by the software developers to detect

the buffer overflow security holes in their developed

binaries even if they are embedding static libraries. To

accurately detect the buffer overflow vulnerable

applications, the proposed solution performs intensive

analysis using a lot of auxiliary techniques like Call

Graph, Control Flow Graph and Data Flow Graph.

Introduction
The origin of Internet attacks is the vulnerabilities and

security holes that already exist in the Internet servers,

clients, routers, and software applications which allow

the hackers to perform their malicious activities. By

exploiting the security holes, the hackers can do a lot of

destructive influences on the Internet servers and clients

such as denial of service and system damage attacks. In

addition, the hackers can do what is more dangerous than

the destructive influences, i.e. the sensitive information

spoofing. Although the Internet attacks techniques are

some what complex and may need a lot of efforts to be

performed, the starting point for any attack is a security

hole that already exists in the Internet components.

The first defense line against Internet attacks is the

Firewall. The Firewall analyzes all the incoming packets

to a private network and permits or drops the packet

based on its own configuration rules. As an advanced

detection technique against Internet attacks, the Intrusion

Detection System analyzes the packets already entered to

the private network (Network Intrusion Detection) or

analyzes the operating system log files (Host Intrusion

Detection) to detect any suspicious behavior based on his

own signatures, and then notifies the administrator with

the suspicious behavior.

Although all these defense techniques and devices, the

Internet is still vulnerable to a lot of attacks and crimes

due to the fatal security holes that already exist in the

Internet components.

The Internet applications security holes represent 70% of

the total holes causing the Internet attacks. One of the

most dangerous applications security holes is “Buffer

Overflow Hole” which is the topic of this paper. The

application is buffer overflow vulnerable, if it doesn’t

check the size of the user input for a buffer array and the

size of the input data is larger than the size of the buffer

array where the areas adjacent to the buffer array will be

overwritten by the extra data. The hackers exploit this

vulnerability by overwriting a buffer adjacent to sensitive

data such as the instruction pointer to change the program

control flow.

In spite of the defense techniques (Firewalls and IDS),

exploiting buffer overflow vulnerabilities can’t be

avoided because of the following:

• The vulnerable applications are running on the

victim servers. The hacker needs only “Execute”

permission on the vulnerable function to exploit

it. He can get this permission if he is an

authenticated user or by spoofing an IP address

of an authenticated user (thus the Firewall can’t

block this call).

• While exploiting the hole, the hacker doesn’t

generate any malicious behavior and so the

intrusion detection system can’t detect the

attack.

Several solutions have emerged to detect the buffer

overflow vulnerability and prevent buffer overflow

attacks. These solutions can be can be classified into,

source code static analysis techniques like ITS4 [Viega

2000] and MOPS [Chen 02] and prevention techniques

(Run-Time solutions) which protect the Internet servers

from the attacks which occur due to buffer overflow

vulnerable running application on these servers.

 2

The prevention techniques are re-active and have a

valuable performance overhead. While the source code

static analysis techniques are pro-active, they have a lot

of limitations.

First of all, today’s applications are so complicated,

perform a lot of functions and may embed several static

libraries where their source code is not available. So even

if the application developer applies the buffer overflow

vulnerability analysis techniques on his source code, he

can’t guarantee that final the produced binary is free of

this vulnerability because he can’t apply these techniques

on the static linked libraries of his binaries.

Second, even if the application vendor guarantees that the

provided application is free of buffer overflow

vulnerabilities, the software production process has a lot

of stages and the released packages may be followed by

service packs or hot fixes to fix problems. Human errors

in applying the buffer overflow detection techniques may

occur which means that from security point of view there

is no way to guarantee that the checked source code’s

binary is the one we are running on the Internet servers.

Third, for a lot of reasons the applications source code

may be lost (a backup is never saved or it had been

destroyed, A key employee leaves without documenting a

program), so the source code static analysis techniques

can’t be applied.

Fourth, the security administrator has no way to pre-

detect the vulnerable applications, so he can’t assist the

running applications against this type of attack. If he

doesn’t apply one of the prevention solutions, the hosts

may be attacked, the hosts’ services may be denied or the

hosts’ critical information may be thieved.

Thus, although the source code static analysis techniques

are pro-active, they need the source code and must be

applied during the development or the testing phases.

Here the question arises, Is it visible to analyze the

applications to detect the buffer overflow security holes

without the availability of the source code? That is the

target of our paper, analyzing the binary code to detect

the buffer overflow vulnerabilities.

By applying the proposed solution, the following will be

available:

• The software vendors can analyze and detect any

buffer overflow vulnerability in any third party

modules

• The software vendors can analyze and detect any

buffer overflow vulnerability in the binary files

even if they embed static libraries.

• The security administrators can detect the buffer

overflow vulnerability in any binary file running

on their critical servers.

The first step in the proposed solution is to convert the

binary file into readable format so it can be analyzed. The

binary file is disassembled, and then a simple buffer

overflow vulnerability detection algorithm is applied. If

the simple detection algorithm can’t detect the

vulnerability, an advanced detection algorithm is called.

The advanced detection algorithm, either analyzes the

vulnerability segment of code or it may have to analyze

the whole application to detect the vulnerability. To

accurately detect the vulnerable applications, a lot of

auxiliary techniques are used in the advanced detection

module like Call Graph, Control Flow Graph and Data

Flow Graph.

The paper is divided into, in addition to this introduction,

seven other sections. Section 2 explains the details of

buffer overflow attacks, section 3 explains their current

solutions, section 4 briefly explains the proposed

solution, section 5 defines the different security rules

which must be followed by any application to be free of

buffer overflow vulnerability, section 6 explains the

difficulties of checking these security rules, section 7

explains the details of proposed solution modules and

section 8 provides an example for a vulnerable

application and the rule of each module to detect the

vulnerability.

2. Buffer Overflow Attacks
If a program doesn’t check the size of the user input for a

buffer array, and the size of the input data is larger than

the size of the buffer array, then areas adjacent to the

array will be overwritten by the extra data. The lack of

such bound checks creates the breeding ground for buffer

overflow attacks.

If the overflowed buffer is a variable allocated on the

program's run-time stack such as local variables or

function arguments, the attack is called Stack Overflow

or Stack Smashing. As opposite to stack overflow if the

overflowed buffer allocated in the Heap, the attack is

called Heap Overflow. Heap overflows are generally

much harder to exploit than stack overflows. The scope

of this paper is the stack overflow where it is the most

common and easy to be exploited.

2.1 Why does Stack Overflow occur?
Stack Overflow occurs because of C compiler doesn’t

perform array bounds checking, some C functions such as

strcpy and strcat don’t check the length of the source

buffer before copying it to the destination buffer and the

C programmers don’t do this check. Although the

destination buffer may be copied into using other C

techniques other than using the vulnerable C functions

but using these functions is the most common method to

copy into buffer arrays.

2.2 Dangerous of Stack Overflow from security

point of view
What happens when a buffer is overflowed?

The adjacent data will be overwritten which leads to

unexpected behavior for the application containing the

overflowed buffer. The dangerous of buffer overflow

increases when the adjacent data to the overflowed buffer

is sensitive, which is obvious in the process’s stack. C

 3

and C++ compilers allocate space for local variables and

the return address of a function in the same stack frame

which leads to changing the value of the return address if

one of the locale variables had been overwritten.

By overflowing a return address of function activation

record, the hacker can do:

a- Crash the application
If the new return address is a non-valid random address,

the application will crash leading to denial of service

Attack.

b- Re-direct the application to run its own

code
In this case, the hacker redirects the application to run his

own code already in the attack buffer to do his malicious

code.

c- Re-direct the application to run an

application resided in the memory
In this case, the hacker redirects the application to run an

application in the memory to perform his malicious

behavior.

3. Related work
To avoid the buffer overflow security problems, several

solutions have emerged to detect buffer overflow

vulnerabilities and protect against buffer overflow

attacks. A brief description of these solutions is to be

presented in this section.

3.1 Source code Static analysis
Several source code static analysis tools have emerged to

detect buffer overflow vulnerabilities while development

and testing phases. These tools can be classified into fault

injection tools [Ghosh 98] which inject deliberate buffer

overflow faults at random to detect the vulnerable

applications and static analysis tools which statically

analyze the source code to detect the buffer overflow

vulnerabilities like [Wagner 2000], ITS4 [Viega 2000]

and MOPS [Chen 02].

3.2 Disabling Stack Execution
Since some forms of buffer overflow attacks rely on code

to be injected into the buffer and then executed, a simple

solution is to install the operating system with stack

execution disabled. [Simon 01]

3.3 Dynamic protection (C Safe library)
A much more robust alternative would be if we could

provide a safe version to the C library functions on which

the attack relies to overwrite the return address [Simon

01]. The much more C Safe library had been introduced

in LibSafe library. LibSafe is a run-time solution that

inserts wrapper code at the start of functions that are

deemed to be vulnerable to buffer overflows. The

solution details are explained in [Tsai 02] and the

advantages are explained in [Simon 01] while the

disadvantages are explained in [Fayolle 02]

3.4 Compiler Techniques
 [Cowan 2000] devised a fresh approach to the problem.

The key idea of the technique is simple.

It is based on the assumption that if a buffer overflow

attack took place then everything between the buffer and

the return address is likely to be corrupted. They propose

to modify the compiler so that it protects the critical

return address and dynamic link part of the activation

record by allocating an extra field aptly called the canary

after the dynamic link and before the local variables in

the activation record. When the activation record is

pushed on the stack a value is stored in the canary field.

Before the function returns the integrity of the canary is

checked. If it was corrupted the canary sings and the

attack is detected. [Speirs 05] lists all advantages and

disadvantages of this protection.

3.5 Protection through the Operating System

kernel
The idea of this method is similar to LibSafe (providing a

method to check on the boundaries of a pointer before

writing to it) but it doesn’t perform this check in the start

of the vulnerable functions but they provide it as a system

to be used by the programmers. The details of the

solution are explained in [Speirs 05]

4. Detecting Buffer Overflow security holes

in binary files
Since Mores worm 1988, a lot of products and researches

have been conducted to protect against buffer overflow

attacks. Because the cause of this vulnerability is a lake

of checks while developing the applications, most of

these products and researches validate the applications

source code against this vulnerability. As we have

explained in the introduction, analyzing the source code

has a lot limitations where they need the source code

(which is not always available) and can't be applied by

the security administrator. For all these reasons, the paper

proposes a new solution for detecting the buffer overflow

vulnerabilities in the binary code. As we have explained

in section 2, there are two types of buffer overflow

vulnerabilities, stack overflow and heap overflow. The

proposed solution detects only stack based buffer

overflow because it is the most dangerous and common

type. Fig. 1 illustrates a general structure for the proposed

solution.

 4

First of all, the binary file must be adapted (transferred

into a format which can be analyzed). A lot of approaches

are available to adapt the binary files such as

disassembling and decompiling. If the binary file can be

decompiled into its original source code, the source code

static analysis techniques can be applied to detect the

vulnerabilities. Unfortunately C/C++ binary de-

compilation is not available today. Although the

existence of some C (C only not C++) decompilers such

as REC [Backer Street Software 2000], DCC [Cifuentes

94] and DisC [Kumar 03], they are not reliable, not

accurate and not functioning regarding a lot of C standard

code techniques. [CANZANESE 04] explains all the

shortcomings and limitations of these de-compilers. After

a lot of investigation, we found that the assembly code is

the most accurate and suitable format to represent the

binary code. After disassembling the binary code, the

system analyzes the assembly to detect the buffer

overflow vulnerabilities.

5. Stack based buffer overflow security rules
Before explaining the different modules of the proposed

model, we will define the security rules which must be

followed by any application to be free of stack based

buffer overflow security holes. As we have explained

before, the stack based buffer overflow attacks occur

because of using the vulnerable C functions (strcpy,

strncpy, strcat, fgets, gets, getws, sprintf, memcpy, scanf,

memmove). As a case study, this section and the

following ones explain the security rules and system

modules details to detect the vulnerabilities due to using

“strcpy” function.

Rule1: The source buffer length must be checked

against the destination buffer length
As we have explained before, the stacked based buffer

overflow holes occur when a program copies user input

buffer into a stack local buffer where the supplied user

buffer length is larger than the local buffer length.

The program developer can protect his application, if he

checks that the user input buffer length is smaller than the

stack buffer length, so we can say that the program
define BUFF_LENGTH 512
Main(int argc, char*[] argv[])

{

Char buffLocal[BUFF_LENGTH +1];
If(strlen(argv[1]) < BUFF_LENGTH) {

Strcpy(buffLocal, argv[1]) }

}

is secure because of the following:

Before using the vulnerable function "strcpy", there is a

source buffer length check.

Rule 2: The source buffer length check must be

valid
The check of the source buffer length against the

destination buffer length must be valid which means that

the program must ensure that the source buffer length is

less than the destination buffer length.

Rule 3: Any model needs to check that an

application is free of buffer overflow holes must

validate the application against Rule1 and Rule2

6. Checking the security rules
Checking the validity of an application against Rule1 and

Rule2 is not an easy task because of the following:

1- The source buffer may be a parameter passed

to the function which performs the actual copy
Really the parameter may be a parameter passed through

a chain of functions before performing the copy as

illustrated in the following program.
void main (int argc, char* SourceBuff)
{ F1 (SourceBuff) }

// ---- F1 function implementation----------------------------

F1 (char* SourceBuff) {F2 (SourceBuff) ;}
// ---- F2 function implementation ----------------------------

F2 (char* SourceBuff)

{ char DestBuff [256];
 strcpy (DestBuff, SourceBuff);

}

Adapted Binary

Code Analysis

Fig. 1 - Detecting security holes in binary files – general structure

Binary

Code
Adaptation

(Disasse-

mbler)

Adapted
Binary

Code

(Assembly

code)

Vulnerabilities

Report

Generator

Vulnerabilities

Report

Binary

Code

 5

2- The source buffer check length may be done

through any function of the functions chain
void main (int argc, char* SourceBuff)
{If (strlen (SourceBuff) < 256) {F1 (SourceBuff)} }

// ---- F1 function implementation----------------------------

F1 (char* SourceBuff) {F2 (SourceBuff) ;}
// ---- F2 function implementation ----------------------------

F2(char* SourceBuff)

{ char DestBuff [256]; strcpy (DestBuff, SourceBuff); }

In this program, although there is no source buffer check

length in "F2" function, the check exists in "Main"

function. To determine if the program is free of the buffer

overflow vulnerability, the checking system must check

all the functions chain.

3- Although the existence of a source buffer

check length, the validation may not be valid

As illustrated in the following program
void main (int argc, char* SourceBuff)

{ int strlen = strlen(SourceBuff)

If(strlen < 512) { F1(SourceBuff) ;}
}

// ---- F1 function implementation----------------------------

F1(char* SourceBuff) { F2(SourceBuff); }
// ---- F2 function implementation ----------------------------

F2(char* SourceBuff) {char DestBuff[256]; strcpy
(DestBuff, SourceBuff); }

Although this program includes a source buffer check

length, the check is not valid because it checks the source

buffer length against 512 and while the destination buffer

length is 256

4- Although the existence of a valid source buffer

check length, the program may include some

data operations affecting on the source buffer

check length validity
As illustrated in the following program

void main (int argc, char* SourceBuff)

{ int sourceBuffLen = strlen(SourceBuff) .

. int sourceBuffLen2 = sourceBuffLen -100;
 If(sourceBuffLen2 < 256) { F1(SourceBuff); }

}

F1(char* SourceBuff) { F2(SourceBuff); }
F2(char* SourceBuff) { char DestBuff[256];

strcpy(DestBuff, SourceBuff);

}

The proposed system considers all these security rules.

The following section explains the system modules in

more details.

7. Buffer Overflow Vulnerability Detection

in Binary Code – Design details
As we have explained in section 4, to analyze any binary

code generated from C/C++ code, it must be disassemble

to generate the corresponding assembly code. Moreover,

in section 5, we formed the necessary security rules

which must be followed by any application to be free of

buffer overflow holes. Furthermore, we illustrated that

any system that needs to check the binary applications

against buffer overflow holes, it must check these

applications against these rules.

Fig. 2 illustrates the details of our proposed system to

analyze the assembly code against the buffer overflow

security rules.

7.1 Simple Detection module
This is the first analysis module to be applied on the

assembly file which performs the following:

• Inspects the assembly instructions to detect

“strcpy” call.

• Checks if the destination buffer is Stack Local

Variable.

• If the source buffer is constant string, it

compares the source and destination buffers

lengths to detect if this call is vulnerable or not.

• If the source buffer length is larger than the

destination buffer length, vulnerability report is

generated.

• If the source buffer is string variable, the

advanced detection module is called.

Simple Detection

Module

Call Graph

Module

Control Flow Graph

Module

Data Flow Graph

Module

Assembly

Code

Advanced Detection

Module

Vulnerability classifier

Module

Reporting
Module

Fig. 2 - Buffer overflow vulnerability detection in binary code – design details

Vulnerability

Report

 6

Here is a simple code segment for the cases detected by

this module

Char DestBuffer [10];

strcpy (DestBuffer, “long constant string variable regarding
to the destination buffer length”);

This code segment copies a fixed length string into a

stack local variable. Although the source is a constant

string, its length is larger than the destination bugger

length so the model reports that the application is

vulnerable.

7.2 Call Graph module
The call graph is a graph which describes the

relationships between a program’s procedures. Its nodes

represent procedures and its edges represent procedure

calls. The Call Graph module is used by the advanced

detection module to extract the different execution paths

of the application.

7.3 Control Follow Graph module
The Control Follow Graph is a graph which describes the

control flow of a program or a program function. The

graph is composed of nodes representing the program

code segments or functions and edges representing the

transition between these nodes. The node is either

Normal node which has no Branch Condition or Branch

node which has Branch condition. The dominant node of

two nodes is the node which exists in all the execution

paths between the two nodes. Fig. 3 illustrates a segment

of code and its corresponding Control Flow Graph

Length = strlen (SourceBuff)
If (Length < 100) { strcpy (DestBuff, SourceBuff) }

Else { Message (“Can’t copy”) }

This component is used in conjunction with the Call

Graph component by the advanced detection module to

check the existence of any dominant node between the

node of checking the source buffer length and the node of

copying the source buffer.

7.4 Data Flow Graph module
It is a graph representing data dependencies between

numbers of operations. From the data flow diagram, the

dependence relation between any two variables in the

graph can be deduced. This component is used by the

advanced detection module to track the operation of any

variable.

7.5 Advanced Detection module
The advanced detection module handles the cases in

which the source buffer is a character pointer supplied by

the user at the application run time which is the most

common case and easies the task of the hacker to attack

the server through this application.

Here is a simple example for the cases detected by this

module

strcpy (DestBuffer,

SourceBuffer)
where SourceBuffer is supplied by the user to the

application and DestBuffer is stack local variable

The main task of the module is to check that

SourceBuffer length is checked safely against

DestBuffer length before “strcpy” call.

This task is not easy as we have explained in details in

section 5 where:

• The Source buffer length may be checked in the

strcpy function caller or any caller to this caller

and so on a long the execution path.

• The result of the source buffer length may not be

referenced (not checked before strcpy call).

• The SourceBuffer check length variable may be

changed after or through the check length code

segment and before strcpy call code segment.

To solve all these problems and others, the advanced

detection module briefly does the following:

Length < 100

FALSE

End If

TRUE

Length = strlen (SourceBuff)

 Message(“Can’t copy”) strcpy (DestBuff, SorceBuff) Node2

Dominant

(Node1, Node2)

Node1 Normal Node

Branch Node

Fig.3 - Control Flow Graph sample

b

 7

• Calculates all the execution paths of strcpy

function caller by using the Call graph module.

• Analyzes all these paths to detect at least one

vulnerable path by using the Control Flow graph

and Data Flow Graph modules in addition to its

own analysis for the retrieved data from these

two modules.

7.6 Reporting module
This module is responsible for generating vulnerabilities

report which accurately describes the vulnerability and

how to remove it. The report includes the name of the

vulnerable function, the name of the immediate

vulnerable function caller, the cause of the vulnerability,

the class of the vulnerability, how the hacker can exploit

the vulnerability and how to remove it.

7.7 Vulnerability classifier module
To generate an accurate vulnerability report, the

vulnerabilities are classified according to their dangerous

from security point of view. Two parameters determine

the class of the vulnerability, the source buffer type

(SBT) and the source buffer data flow equation (SBE)

which describes the relation between the check length

variable and dominant node branch condition left hand

side. Table 1 enumerates the different combinations of

these variables and the corresponding vulnerability class.

SBT SBE
Vulnerability

class

Constant * Low Dangerous

User Input
Invalid

Equation

High Dangerous

User Input
Undecided

Equation
Dangerous

Let’s read the rows of the table. The first row tells that, if

the source buffer type is constant buffer and regardless

the source buffer equation, the vulnerability type is low

dangerous. The vulnerability is classified as Low

Dangerous because it is unattended programming error

and its maximum influence is to crash the application.

The second row tells that, if the source buffer is user

input data and the source buffer equation is invalid

(which means that the source buffer check length is not

secure against the destination buffer length), the

vulnerability is High Dangerous. The vulnerability is high

dangerous because it is a big hole in the application

where there is an input buffer from the user which is

copied to a stack local variable with invalid check length.

This vulnerability can be exploited by hackers to

overflow the local variable. The third row tells that, if the

source buffer is user input data and the source buffer

equation is Undecided, the vulnerability is Dangerous

because it is not an absolute hole.

7.8 Dominant Node’s Branch Condition Analysis
The branch condition of the dominant node plays a

significant rule in determining if the application is

vulnerable or not. Here is an example for the branch

condition of the dominant node
if (SourceLen < 256)

Based on this condition and the value of the Transition

Edge between the Dominant Node and strcpy node (or

any function in the execution path of strcpy function)

(TRUE or FALSE), strcpy function is called. The

advanced detection module analyzes this condition in

conjunction with the Transition Edge value. Based on this

analysis, the advanced detection module generates two

security conditions. If any one of these conditions is not

satisfied, the application is vulnerable.

Table 2 illustrates all the different combinations of the

Branch Condition in conjunction with the Transition

Edge value and the corresponding security conditions.

Branch condition Transition Edge Security conditions

LHS < RHS TRUE
SourceBuffLen <= LHS

DestBuffLen >= RHS

LHS < RHS FALSE
SourceBuffLen >= LHS

DestBuffLen <= RHS

LHS > RHS TRUE
SourceBuffLen <= RHS

DestBuffLen >= LHS

LHS > RHS FALSE
SourceBuffLen >= RHS

DestBuffLen <= LHS

LHS = RHS TRUE
SourceBuffLen <= LHS
DestBuffLen >= RHS

LHS = RHS FALSE Undecided

Note: LHS stands for the left hand side of the branch

condition while RHS stands for the right hand side of the

branch condition.

Table 2 Dominant node branch condition analysis

Table 1 Buffer overflow vulnerability classes

 8

8. Buffer Overflow Vulnerability Detection

in Binary Code – System Implementation
8.1 System modules implementation packages
As we have explained in section 5, the binary code is

disassembled and then the generated assembly code is

analyzed to detect the buffer overflow vulnerabilities.

Here is a list of the system modules and how we have

implemented each one of them.

1- Binary adaptation module (Disassembler): We

have used IDA Pro Disassembler [IDA Pro Web

Site]

2- Simple Detection module: It is written as IDC

script. IDC is the easiest way for programming IDA

Pro. It is a scripting language which is very similar to

ANSI C language.

3- Advanced Detection module: IDC script.

4- Vulnerability Classifier module: IDC script.

5- Call Graph: IDC script.

6- Control Flow Graph: It is written as IDA plug-in.

In case the required code exceeds the capabilities of

IDC, we can resort to writing an IDA plug-in. IDA

Pro Plug-ins are developed in C++ and can call IDA

Pro APIs directly.

7- Data Flow Graph: IDA Plug-in.

8.2 IDC Script Sample
Listing all the scripts and Plug-ins code is out of scope of

this paper but we will list the IDC script of one of the

simple detection module functions.

 The function is called FindVulnerableFunction2 and it

is used to find a vulnerable function call in an assembly

file stating from a specific address.

static FindVulnerableFunction2(vulFuncName, startAddress)
{auto tempAddress;

while(startAddress != -1)

{
if(GetMnem(startAddress) == "call")

{

if(GetOpnd(startAddress, 0) == vulFuncName)
{return startAddress; }

}

startAddress = NextAddr(startAddress);
}

return startAddress;

}

8.3 Detecting vulnerable application example
In this section we will illustrate a vulnerable application

and explain the rule of each module to detect the

application vulnerability. The following program is a

very complicated vulnerable program where it has a non-

valid source buffer check length due to modification in

the source buffer check length variable "sourceBuffLen"
void main (int argc, char* SourceBuff)
{

 int sourceBuffLen = strlen(SourceBuff)

int sourceBuffLen2 = sourceBuffLen -100;
 If(sourceBuffLen2 < 256) { F1(SourceBuff); }

}

F1(char* SourceBuff)
{ F2(SourceBuff); }

F2(char* SourceBuff)
{ char DestBuff[256];

 strcpy(DestBuff, SourceBuff);

}

Fig. 4 illustrates the rule of each module in the system to

detect the security hole of this application.

Call Graph Control Flow Graph Data Flow Graph

Finds vulnerable function call
The destination variable is stack local variable

The source buffer is variable length buffer

IsLengthChecked in F2 = FALSE

IsLengthChecked in F1 = FALSE
IsLengthChecked in Main = TRUE

IsValidCondition () = TRUE

IsValidRelation () = FALSE

GetDominantNode ()

GetBranshCondition ()

Strlen2 < 256

GetNode ()

Assembly code

GetExecutionPaths ()

Main\F1\F2

GetRelation ()

Fig. 4 – The rule of each module to detect a vulnerable application

Simple detection

module

Advanced detection

module

sourceBuffLen2 =

sourceBuffLen -100

 9

Conclusion
A lot the internet servers applications contain several

security holes which enable the hackers to attack these

servers although the servers are protected by Firewalls,

Intrusion Detection Systems and other security

techniques. Early detecting the applications' security

holes increases the applications reliability and aids

security administrators to protect their critical servers.

In this paper, we have approved that the applications

security holes can be detected in the applications binary

format. We have provided a general model for detecting

the applications security holes, and then we have

provided the model details to detect stack based buffer

overflow security holes.

Also we have provided the security rules the applications

must follow to avoid the existence of buffer overflow

holes and explained how the proposed model verifies the

applications against these rules.

References
[Backer Street Software 2000]

http://www.backerstreet.com/rec/rec.htm, 1997 – 2005

[CANZANESE 04] RAYMOND J. CANZANESE, JR.,

MATTHEW OYER, SPIROS MANCORIDIS, and MOSHE

KAM, " A Survey of Reverse Engineering Tools for the 32-Bit

Microsoft Windows Environment ", ACM Journal Name, Vol.

V, No. N, Month 20YY, 2004

[Cifuentes 94] http://www.itee.uq.edu.au/ristina/dcc.html

[Chess 04] Brian Chess and Gary McGraw, “Static Analysis for

Security”, IEEE SECURITY & PRIVACY, 2004

[Chen 02] “MOPS: An Infrastructure for Examining Security

Properties of Software,” Proc. 9th ACM Conf. Computer and

Communications Security (CCS2002), ACM Press, 2002, pp.

235–244.

[Cowan 2000] Crispin Cowan, Perry Wagle, Calton Pu, Steve

Beattie, and Jonathan Walpole, “Buffer Overflows - Attacks

and Defenses for the Vulnerability of the Decade” In DARPA

Information Survivability Conference and Expo 2000.

[FAYOLLE 02] Pierre-Alain FAYOLLE, Vincent GLAUME,

“A Buffer Overflow Study Attacks & Defenses”, International

Conference on Dependable Systems and Networks (DSN'02)

Washington, D.C., USA, June 23 - 26, 2002

 [Ghosh 98] Anup K Ghosh, Tom O’Connor, and Gary

McGraw, “An Automated Approach for Identifying Potential

Vulnerabilities in Software”, In the Proceedings of the IEEE

Symposium on Security and Privacy, Oakland, CA, May 1998.

[IDA Pro Web Site] http://www.datarescue.com/

[Kumar 03] http://www.debugmode.com/dcompile/disc.htm

[Simon 01] Istvan Simon, “A Comparative Analysis of Methods

of Defense against Buffer Overflow Attacks”, California State

University, Hayward Hayward, CA 94542, January, 31 2001

[Speirs 05] William R. Speirs. “Making The Kernel

Responsible: A New Approach To Detecting & Preventing

Buffer Overflows”, The Advanced Technology Research

Center, 2005.

 [Tsai 02] Timothy Tsai and Navjot Singh, “Libsafe:

Transparent System-wide Protection Against Buffer Overflow

Attacks”, International Conference on Dependable Systems and

Networks (DSN'02) Washington, D.C., USA, June 23 - 26,

2002

[Wagner 2000] David Wagner, Jeffrey S. Foster, Eric A.

Brewer, and Alexander Aiken, “A First Step Towards

Automated Detection of Buffer Overrun Vulnerabilities” In

NDSS (Network and Distributed System Security), San Diego,

CA, February 2000.

 [Viega 2000] John Viega, J.T. Bloch, Yoshi Kohno and Gary

McGraw, “ITS4: A Static Vulnerability Scanner for C and C++

Code”, Reliable Software Technologies, Dulles, Virginia

