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Abstract

The modular neural network (MNN) inversion method has been used for inversion of
self-potential (SP) data anomalies caused by 2D inclined sheets of infinite horizontal extent.
The analysed parameters are the depth (h), the half-width (a), the inclination (α), the zero
distance from the origin (xo) and the polarization amplitude (k). The MNN inversion has been
first tested on a synthetic example and then applied to two field examples from the Surda area
of Rakha mines, India, and Kalava fault zone, India. The effect of random noise has been
studied, and the technique showed satisfactory results. The inversion results show good
agreement with the measured field data compared with other inversion techniques in use.
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Introduction

The self-potential (SP) method is based on measurements of
natural electric fields at the Earth’s surface or in boreholes
(Corwin 1990, Mendonça 2008) generated by coupled-flux
processes taking place in the shallow part of the subsurface
(Sill 1983). A gradient in a primary potential of pressure,
temperature or concentration potentials drives a primary
flux of matter, heat or charge. This flux leads to charge
separation which is balanced by a counteracting (coupled)
flux of current whose divergence may generate a measurable
SP anomaly (Mendonça 2008). The diversity of mechanisms
which generate the primary flux, provides wide applications in
engineering problems, groundwater investigations, subsurface
temperature distributions and mineral investigations related
to sulfides and graphite (Sundararajan et al 1998, Mendonça
2008). In mineral exploration, natural gradients in the ground
redox potential generate SP anomalies that have helped locate
sulfide ore bodies. Main factors creating gradients in the
redox field are rainwater infiltration and oxygen diffusion from
the atmosphere that generate an oxidizing environment in the
shallow subsurface, in contrast to the reducing conditions
found at depth. A conductive material connecting such
contrasting shallow and deep regions conveys an upward flow
of electrons. The upper portion of the conductor releases

electrons and works as a battery cathode pole. Its lower portion
retrieves electrons from the surrounding medium and works as
a battery anode. The corresponding flow of groundwater ions
in the earth surrounding the deposit generates the observed SP
anomaly (Sato and Mooney 1960, Mendonça 2008).

Several methods available for the interpretation of
SP anomalies generally assume the causative bodies to
be of regular geometrical shapes which can be described
with appropriate analytical formulae. The method of
characteristic points (Paul 1965, Paul et al 1965, Rao
et al 1970), logarithmic-curve matching (Meiser 1962,
Murthy and Haricharan 1984) and the method of nomograms
(Bhattacharya and Roy 1981, Murthy and Haricharan 1985)
all involve many approximations. A least-squares approach
has been used to estimate the depth of a causative target from
residual SP anomaly caused by bodies of simple geometries
(Abdelrahman and Sharafeldin 1997). This method requires
a series of trials to minimize the error between the observed
and calculated values. A few methods have been developed to
determine the shape of a SP anomaly using the least-squares
method (Abdelrahman et al 1997a) and the numerical gradient
method (Abdelrahman et al 1997b). The derivative analysis
method (Abdelrahman et al 1998) in addition to extended
derivative analysis to higher derivatives is used to estimate
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not only the shape factor but also the depth of the source
of SP anomaly. The spectral analysis method is trustworthy
only for very long profiles (Sundararajan et al 1998). While
the simplicity of use and the accuracy of results differ with
the specific interpretation technique, they are subject to many
constraints. These methods do not yield a precise location
of origin of the source of the anomaly, which is a must for
meaningful interpretation.

Sundararajan et al (1990) utilized the Hilbert transforms
for the interpretation of SP anomalies for determining the
centre or origin of the body based on the use of the Hilbert
transform, which avoids many of the drawbacks listed above.

Geophysical inversion involves the estimation of the
parameters of a postulated earth model from a set of
observations. It may be viewed as an attempt to fit the response
of an idealized subsurface earth model to a finite set of actual
observations. Neural networks (NNs) have been implemented
successfully within many areas of geophysics including the
inversion of seismic data, well logging, electromagnetic,
magnetotelluric, magnetic and gravity data (e.g. Poulton 2001,
2002, Van der Baan and Jutten 2000, Bescoby et al 2006,
El-Kaliouby and Poulton 1999, Macias et al 2000, Zhang et al
2002, Spichak and Popova 2000, and many others).

In this paper, NNs are used in inverting the SP anomalies
over a sheet-like causative target.

Theory

Neural networks

NNs can be considered as a class of universal approximators
that are capable of approximating any function in terms of
its variables. Hence, they may yield important contributions
to finding solutions to a variety of geophysical applications
(Macias et al 2000, Poulton 2001).

NN models can be more accurate than polynomial
regression models used for approximating functions, allowing
more dimensions than look-up table models, and allowing
multiple outputs for a single model. Models using
NNs are developed by providing sufficient training data
(either simulated or measured data) from which they learn
the underlying input/output mapping. Several valuable
characteristics are offered by NNs.

• First, no prior knowledge about the input/output
mapping is required for model development. Unknown
relationships are inferred from the data provided for
training. Therefore, with a NN, the fitted function is
represented by the network and does not have to be
explicitly defined.

• Second, NNs can generalize, meaning they can respond
correctly to new data that have not been used for model
development.

• Third, NNs have the ability to model highly nonlinear
as well as linear input/output mapping. In fact, it has
been shown that NNs are capable of forming an arbitrarily
close approximation to any continuous nonlinear mapping
(Zhang and Gupta 2000).

• Once properly trained, the NNs can perform the inversion
in nearly no time.

Hidden Layer

Output Layer

Output Parameters (h, a, k, xo and α )

Input Layer

SP Data

…….

…….

…

Figure 1. Typical neural network architecture showing the input and
output parameters.

These capabilities make it possible for the NN to solve complex
(large-scale) problems that are currently intractable.

Typically a neural network is given a training set of a
group of examples from which it learns to approximate the
mapping function described by the example patterns. The most
commonly used training scenarios utilize supervised learning,
during which the network is presented with input patterns
together with the desired output patterns, the target output
constituting the correct answer or correct classification of the
input data. In unsupervised learning, the network is provided
only with input patterns and it finds common features in groups
of those patterns (Poulton 2001).

A neural network consists of a layered system of
interacting nodes (figure 1); each one is a single processing
element (PE) that acts on data to produce a result. Each node
has also an extra input called the threshold input, which acts
as a reference level or bias for the node. There is a minimum
of three layers for nonlinear problems: an input layer, at least
one hidden layer and an output layer. Data enter the network
through the input layer; each node broadcasts a single data
value over weighted connection to the hidden nodes, which
process the input data and broadcast their results to the output
layer. The output nodes also have distinct sets of weights and
process input values to produce a result. This architecture is
called feed-forward multi-layer perceptron (MLP) (figure 1).

The hidden node processes its input in two steps. First, it
multiplies every input by its weight, sums the product and then
passes the sum through a nonlinear transfer (e.g. hyperbolic
tanh) function also called a threshold function to produce a
result which is the activation of the PE. The activation is
multiplied by the connection weights going to the next layer.
The input signal is propagated through the network in this way
until it reaches the output layer.

The most important and time-consuming step in model
development is NN training. A NN learns the problem
behaviour through this process. The NN would be taught
with measured/simulated samples from a training set. From
the training point of view, the NN performance is evaluated by
computing the difference between the actual NN outputs and
the desired outputs for all the training samples.

In this paper, the NN was designed to learn to extract
the five parameters (depth to the centre of the sheet (h), half-
width of the sheet (a), polarization amplitude (k), zero distance
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Figure 2. Block diagram of the general modular neural network
architecture (Haykin 1994).

from the origin (xo) and angle of inclination of the sheet (α),
figure 3) from the input data (SP data with distance).

The input layer has as many input nodes as there are input
samples (SP data). There are five output nodes in the output
layer for the desired parameters (h, a, k, xo and α).

The training process adjusts the weight parameters (w)
in the network such that the error between the neural model
predictions and the desired output E(w) is minimized, where
E(w) is a nonlinear function of w. Due to the complexity
of E(w), iterative algorithms are used to explore the weight
space. In iterative methods, we start with an initial guess of w

and then iteratively update w as

wnew = wold + η n

where wold and wnew are the current and new vectors containing
the values of the weights, n is the update direction and η is
a positive step size regulating the extent to which w can be
updated in that direction (Zhang and Gupta 2000).

If the training error remained high and flat for a large
number of iterations, this means that the training process is
trapped in a local minimum. We can perturb w, try a new
initial guess and restart the training process.

Modular neural network (MNN)

The NN used was trained using the modular neural network
(MNN) architecture, which was successfully used for different
geophysical data (El-Kaliouby and Poulton 1999, El-Kaliouby
2001, Zhang et al 2002, Bhatt and Helle 2002). A modular
neural network (MNN) as defined by Haykin (1994) is one
in which the computation performed by the network can be
decomposed into a group of modules (local experts) that
operate on distinct inputs without communicating with each
other (figure 2). The outputs of the modules are mediated by
an integrated unit (gating network) that is not permitted to feed
information back to the modules. In particular, the integrated
unit both (1) decides how the output of the modules should
be combined to form the final output of the system and (2)
decides which modules should learn which training patterns.
The use of a modular approach can be justified on biological
grounds.

A MNN combines supervised and unsupervised learning
paradigms in a unique way. The gating network learns to
break a task into several parts, which is unsupervised learning,

Figure 3. Inclined sheet geometry of infinite horizontal extent.

and each module is assigned to learn one part of the task,
which is supervised learning. The modules compete with each
other to learn each training pattern, controlled by the gating
network, which performs the function of a mediator among
the modules (Haykin 1994). Each module or local expert and
the gating network receive the same input pattern from the
training set. The gating network and the modules are trained
simultaneously. The gating network determines which local
expert produced the most accurate response to the training
pattern and the connection weights in that module are allowed
to be updated to increase the probability that this module will
respond best to similar input patterns (Haykin 1994, Zhang
et al 2002).

Formulation of the problem

The SP potential at any point P on the surface on a line
perpendicular to the strike of a 2D inclined sheet of infinite
horizontal extent (figure 3) is given by (Murthy and Haricharan
1985, Sundararajan et al 1998)

V (x) = k ln

{
[(x − xo) − a cos α]2 + (h − a sin α)2

[(x − xo) + a cos α]2 + (h + a sin α)2

}
(1)

where the polarization parameter k = Iρ

2π
, h is the depth to the

centre of the sheet, α is the inclination, a is the half width, ρ is
the resistivity of the medium, xo is the zero distance from the
origin and I is the current density (current per unit area) of the
medium.

Results

Synthetic example

The synthetic example data are samples at 81 points of input
data over a 160 m profile with a 2 m interval (figure 4). We
used the MNN to invert the SP data using 81 points for the input
layer; a similar number of nodes was also used in the hidden
layer. Five local experts with seven processing elements have
been used for the MNN. The hyperbolic tangent (Tanh) transfer
function was used to modify activations in the hidden layer.
We assumed the target to have the parameters h = 10 m,
a = 5 m, α = 40◦, xo = 10 m and k = 100 mV, leading
to the response shown in figure 4. We have used 6125
training models covering the ranges of the parameters. The
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Figure 4. Synthetic SP anomaly profile over a sheet-like body and
its NN inversion response. The sheet parameters are h = 10 m, a =
5 m, α = 40◦, xo = 10 m and k = 100 mV.

parameter ranges that were used for training the network are as
follows:

• the depth h range (5–15 m), with five points in this range;
• the half-width a range (2–8 m), with five points in this

range;
• the inclination α range (20◦–60◦), with seven points in

this range;
• the polarization amplitude term k range (70–130 mV),

with seven points in this range;
• the origin location xo range (−15 m to 30 m), with five

points in this range.

The choice of the centres of the parameter ranges and the
expected ranges of the parameters is based on the measured
field data behaviour. These expected ranges are less restricted
than assuming an initial starting model in the local inversion
methods that might be far from the true parameters and the
solution might get trapped in a local minimum.

The choice of the parameter ranges is dependent mainly
on the measured field (voltage) data response. Based on the
master curves of the parameter responses, deep targets show a
broad curve while shallow targets show a sharp narrow curve.
The angle of inclination will affect the symmetry of the field
curve anomaly while the zero distance from the origin range
is selected around the anomaly minimum (negative trough). A
coarse range is usually selected at the beginning with a small
number of points for each parameter in order to explore the
suitability of the selected range to fit the field data. If any of the
parameters does not fall within the selected range, the NN can
report that this parameter is out of range so that we can expand
the range. In the learning process, we can examine the learning
error of each parameter individually and the overall root mean
square error (RMS) as well; if the learning error is accepted, we
compare the misfit between the NN inversion response with the
field data. If the misfit is reasonable, then the suggested range
is suitable; otherwise we need to narrow/expand the parameter
ranges based on the learning error of each parameter. We can
also increase the resolution of each parameter by increasing
the number of points per range. This process usually requires
two-step (coarse to fine) training for the neural network which
does not take much time. However, once the network is well

Figure 5. Synthetic SP anomaly profile over a sheet-like body with
3.2% of random WGN and its NN inversion response.

Figure 6. Synthetic SP anomaly profile over a sheet-like body with
10% of random WGN and its NN inversion response.

trained, it can invert any field data that fall within the training
range in almost no time.

The result of the MNN inversion response is shown in
figure 4 and the inversion parameters are tabulated in table 1.

Noise analysis

The effect of random noise has been studied by adding 3.2%
(30 dB) and 10% (20 dB) of white Gaussian noise (WGN) to
the SP anomaly (figures 5 and 6). It can be observed that the
inverted noisy anomalies are still acceptable, confirming that
the NN inversion provides satisfactory results up to 10% of
random WGN (table 1).

Field examples

To investigate the applicability of the proposed technique, we
used two field examples as follows.

Surda anomaly

Figure 7 shows a well-known SP anomaly (Murthy et al 2005)
obtained from the Surda area of the Rakha mines, Singhbhum
copper belt, Bihar, India. The Surda SP anomaly was sampled
at 26 points of input data over a 250 m distance with a 10 m
interval. We have used 16 807 training models covering the
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Table 1. Theoretical example.

Parameters h (m) a (m) α (degrees) k (mV) xo (m)

Assumed values 10 5 40 100 10
NN inversion values without noise 10.23 5.42 38.65 96.67 10.70
NN inversion with 3.2% of WGN 10.32 5.54 37.89 96.35 10.71
NN inversion with 10% of WGN 10.85 5.49 38.66 97.3 11.93

Table 2. Interpreted SP parameters of Surda anomaly.

Parameters h (m) a (m) α (degrees) k (mV) xo (m)

Paul (1965) 21 40.20 20.01 – –
Rao et al (1970) 30.48 34.87 10.01 – –
Jagannadha Rao 29.88 29.40 45 – 15.00
et al (1993)
Sundararajan et al 27.65 32.35 13.20 – –
(1998)
Murthy et al (2005) 26.52 19.81 57.63 – 15.84
NN inversion 27.78 19.51 50.96 130.86 5.86

Figure 7. Self-potential anomaly profile over a sulfide
mineralization zone in the Surda area of Rakha mines (after Murthy
and Haricharan 1984) and its neural network inversion compared
with Murthy et al (2005) and Jagannadha Rao et al (1993).

ranges of the parameters. The parameter ranges that were used
for training the network are as follows:

• the depth h range (10–40 m), with seven points in this
range;

• the half-width a range (10–30 m), with seven points in
this range;

• the inclination α range (20◦–50◦), with seven points in
this range;

• the polarization amplitude k range (90–180 mV), with
seven points in this range;

• the origin xo range (−20 to 40 m), with seven points in
this range.

The MNN inversion response compared with the Murthy et al
(2005) inversion response and the measured response is shown
in figure 7, and the inversion parameters are tabulated in
table 2. The present inversion response shows a better fit
with the measured data compared with that of Murthy et al
(2005).

Figure 8. Self-potential anomaly profile over a sulfide body in the
Kalava fault zone, Cuddapah Basin, India (after Rao et al (1982)),
and its neural network inversion compared with Murthy et al (2005)
and Jagannadha Rao et al (1993).

Table 3. Interpreted SP parameters of Kalava anomaly.

Parameters h (m) a (m) α (degrees) k (mV) xo (m)

Jagannadha Rao 7.59 3.75 80 – 0.4
et al (1993)
Murthy et al (2005) 9.38 3.96 80.76 – −0.4
NN inversion 7.2 3.15 78.72 68.29 −0.9

Kalava anomaly

Figure 8 shows the SP anomaly profile across a mineralization
in the Kalava fault zone, Cuddapah basin, India (Rao et al
1982). The Kalava SP anomaly was sampled at 41 points over
a 40 m distance with a 1 m interval. We have used 12 500
training models covering the ranges of the parameters. The
parameter ranges that were used for training the network are
as follows:

• the depth h range (5–15 m), with ten points in this range;
• the half-width a range (1–7 m), with ten points in this

range;
• the inclination α range (80◦–120◦), with five points in this

range;
• the polarization amplitude k range (50–100 mV), with five

points in this range;
• the origin location xo range (−5 to 5 m), with five points

in this range.

The MNN inversion response compared with the inversion
response of Rao et al (1982) and with the measured results is
shown in figure 8, and the inversion parameters are tabulated in
table 3. Again, the present inversion response shows a better
fit with the measured data compared with that of Rao et al
(1982).
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Conclusion

Inversion of SP parameters of 2D inclined sheets of infinite
horizontal extent has been studied. MNN inversion has
been utilized for five SP parameters, where it has been
tested first on synthetic data and then on two field examples.
The hyperbolic tangent function (tanh) has been used as
an activation function in MNN. The effect of noise has
been studied and the results show that the technique gives
satisfactory results even up to 10% noise. The inversion
results of the two field examples showed good agreement
compared with other inversion techniques in use. Therefore,
the successful application of the NN inversion to synthetic and
field data demonstrates the validity of this method.
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