4 minne Somadionandy

Atomic Mass:

The atomic mass of an element is the mass average of the atomic masses of the different isotopes of an element.
For example, naturally occurring carbon, for example, is a mixture of two isotopes, ${ }^{12} \mathrm{C}$ (98.89\%) and ${ }^{13} \mathrm{C}$ (1.11 \%).
Individual carbon atoms therefore have a mass of either 12.000 or 13.03354 amu .
But the average mass of the different isotopes of carbon is 12.011 amu .

CHEMISTRY For premariory vars suoents

Molecular Mass (molar mass, molecular weight)

- The molecular mass of a compound is the sum of the atomic masses of the atoms in the molecules that form these compounds.
- Calculate the molecular mass of the sugar molecule found in cane sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.

Atom	Symbol	Number of atoms	Mass of one atom	Total mass (amu)	
Carbon	\mathbf{C}	12	12.011 amu	12×12.011	144.132
Hydrogen	\mathbf{H}	22	1.0079 amu	$22 \times(1.0079)$	22.174
Oxygen	\mathbf{O}	11	15.9994 amu	$11 \times(15.9994)$	175.993
					$\mathbf{3 4 2 . 2 9 9}$

Molar mass and the mole

- one mole is defined as the number of carbon atoms in exactly
12.000000 grams of pure ${ }^{12} \mathrm{C}$.
- A mole of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ would have a mass of 342.299 grams.
- This quantity is known as the molar mass, a term that is often used in place of the terms atomic mass or
 molecular mass.

Determine the molar mass of NaOH ?

NaOH contains one Na atom + one oxygen atom + one hydrogen atom
Molar mass $=1 \mathrm{x}$ mass of Na atom +1 x mass of O atom +1 x mass of H atom
The masses of the elements can be obtained from the periodic table.

$$
=1 \times 22.99+1 \times 16.00+1 \times 1.008=39.99 \mathrm{~g}
$$

Number of moles

- To determine the number of moles use the following formula or triangles:
number of moles $=\frac{\operatorname{mass}(g)}{\text { molar mass }(g / \text { mole })}$

How many moles are there in 22.99 g of sodium?

$$
\begin{aligned}
& \text { number of moles }=\frac{\operatorname{mass}(\mathrm{g})}{\text { molar mass }(\mathrm{g} / \mathrm{mole})}=\frac{22.99 \mathrm{~g}}{22.99 \mathrm{~g} / \mathrm{mole}(\text { from the periodic table })} \\
& \text { number of moles }=1 \text { mole. }
\end{aligned}
$$

How many moles are there in 1 g of chlorine?
number of moles $=\frac{\operatorname{mass}(\mathrm{g})}{\text { molar mass }(\mathrm{g} / \mathrm{mole})}=\frac{1 \mathrm{~g}}{35.45 \mathrm{~g} / \mathrm{mole}(\text { from the periodic table })}$
number of moles $\mathbf{= 0 . 0 2 8}$ mole.

CHEMISTRY For Prefaratory year students

How many grams are there in 0.10 mole of CH_{4} ?
First calculate the molar mass of CH_{4}
Molar mass of $\mathrm{CH}_{4}=1 \times$ mass of C atom $+4 \times$ mass of H atoms $=1 \times 12.01+4 \times 1.008=16.02 \mathrm{~g} / \mathrm{mole}$
Then use the formula:
mass of $\mathrm{CH}_{4}=$ number of moles \times molar mass of CH_{4}
 $=0.10$ mole $\times 16.02 \mathrm{~g} / \mathrm{mole}=1.602 \mathrm{~g}$

Which one is the lightest in mass: one mole of hydrogen, one mole of sodium, one mole of iron, one mole of sulfur?

One mole for an element contains the atomic mass of the element. Atomic mass of $\mathrm{H}=1.008 \mathrm{~g} / \mathrm{mole}$, Atomic mass of $\mathrm{Na}=22.99 \mathrm{~g} / \mathrm{mole}$, Atomic mass of $\mathrm{Fe}=55.85 \mathrm{~g} / \mathrm{mole}$, Atomic mass of $\mathrm{S}=32.07 \mathrm{~g} / \mathrm{mole}$.

CHEMISTRY For preparatory yearstudents

AVEGAOROM NUMRER \& THE MGLE

1 mole of anything contains the Avogadro 's Number (\mathbf{N}_{A}) of this thing
Avogadro 's Number (NA) $=6.02214 \times 10^{23}$
1 mole of particles $=6.02214 \times 10^{23}$ particles for any substance

1 mole of shoes $=6.02214 \times 10^{23}$ shoes

1 mole of cars $=6.02214 \times 10^{23} \mathrm{car}$

1 mole of carbon atoms= 6.02214×10^{23} carbon atoms

1 mole of water molecules $=6.02214 \times 10^{23}$ water molecules

Number of particles = number of moles x Avogadro's number

To calculate the number of particles (atoms, molecules, shoes....etc) use the following formula:

Number of particles = number of moles x Avogadro's number

Calculate the number of atoms in 2 mole of hydrogen? Number of hydrogen atoms =

2 moles of $\mathrm{H} \times 6.02214 \times 10^{23} \mathrm{H}$ atom / mole Number of hydrogen atoms $=1.20 \times 10^{24} \mathrm{H}$ atom

Calculate the number of atoms in 6.46 grams of helium (He)?

Number of He atoms $=$ number of moles \times Avogadro's number
$=1.61$ moles of $\mathrm{He} \times 6.02214 \times 10^{23} \mathrm{He}$ atom $/ \mathrm{mole}$ $=9.66 \times 10^{23} \mathrm{He}$ atom

CHEMISTRY For Prefaratory Year students

- This could be done in one step:

number of He atoms $=\frac{6.46(\mathrm{~g})}{4.0(\mathrm{~g} / \mathrm{mole})} \times 6.02214 \times 10^{23} \mathrm{He}$ atom $/ \mathrm{mole}$
$=9.66 \times 10^{23} \mathrm{He}$ atom

Calculate the mass of one atom of sodium?

Use the following formula:

mass of 1 atom $=\frac{\text { number of atoms } \times \text { molar mass }(\mathrm{g} / \mathrm{mole})}{\mathrm{N}_{\mathrm{A}}}$

$$
\text { mass of } 1 \text { atom } \mathrm{Na}=\frac{1 \text { atom } \times 23.0(\mathrm{~g} / \mathrm{mole})}{6.022 \times 10^{23}(\text { atom } / \mathrm{mole})}=3.82 \times 10^{-23} \mathrm{~g}
$$

Caffeine is a stimulant drug and it is found in coffee, tea and beans. Its molecular formula is $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculate the number of oxygen atoms in 19.40 grams of caffeine.
Molar mass of caffeine $=8 \times \mathrm{C}+10 \times \mathrm{H}+4 \times \mathrm{N}+2 \times \mathrm{O}$ $=8 \times 12+10 \times 1+4 \times 14+2 \times 16=194 \mathrm{~g} / \mathrm{mole}$
number of moles $=\frac{\operatorname{mass}(\mathrm{g})}{\text { molar mass }(\mathrm{g} / \text { mole })}=\frac{19.40 \mathrm{~g}}{194 \mathrm{~g} / \mathrm{mole}(\text { from the periodic table })}$ number of moles $=0.10$ mole

Total number of $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ molecules= number of moles $\times \mathrm{N}_{A}$
 $=0.10$ moles $\times 6.022 \times 10^{23}$ molecules $/ \mathrm{mole}$
Total number of $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ molecules $=6.022 \times 10^{22}$ molecules

Number of oxygenatoms $=\frac{\text { number of oxygenatoms }}{\text { molecules }} \mathrm{x}$ total number of molecules

$$
\text { Number of oxygen atoms }=\frac{2 \text { oxygen atoms }}{\text { molecules }} \times 6.022 \times 10^{22} \text { molecules }
$$

$$
\text { Number of oxygen atoms }=1.20 \times 10^{23} \text { oxygen atoms }
$$

Number of carbon atoms $=4.8 \times 10^{23}$ carbon atoms
Number of hydrogen atoms $=6.022 \times 10^{23}$ hydrogen atoms
Number of nitrogen atoms $=2.40 \times 10^{23}$ nitrogen atoms
CHEMISTRY For Preparatoory Year students

Caffeine is a stimulant drug and it is found in coffee, tea and beans. Its molecular formula is $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculate the number of oxygen atoms in 19.40 grams of caffeine.

This could be done in one step:

number of oxygenatoms $=\frac{19.4(\mathrm{~g})}{194(\mathrm{~g} / \mathrm{mole})} \times 6.022 \times 10^{23} \times 2=1.2 \times 10^{23}$ oxygenatoms
number of carbonatoms $=\frac{19.4(\mathrm{~g})}{194(\mathrm{~g} / \mathrm{mole})} \times 6.022 \times 10^{23} \times 8=4.8 \times 10^{23}$ carbonatoms
number of hydrogen atoms $=\frac{19.4(\mathrm{~g})}{194(\mathrm{~g} / \mathrm{mole})} \times 6.022 \times 10^{23} \times 10=6.022 \times 10^{23}$ hydrogenatoms

$$
\text { number of nitrogen atoms }=\frac{19.4(\mathrm{~g})}{194(\mathrm{~g} / \mathrm{mole})} \times 6.022 \times 10^{23} \times 4=2.4 \times 10^{23} \text { nitrogen atoms }
$$

Mass Percent

The Mass Percent of an element is defined as:

$$
\text { Mass Percent of an element }=\frac{\text { Mass of the element }}{\text { Total molar mass of the sample }} \times 100 \%
$$

What is the mass percent of carbon, hydrogen, and oxygen in pure ethanol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$?

-First: calculate the molar mass of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

MW of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}=2 \times \mathrm{C}+6 \times \mathrm{H}+1 \times \mathrm{O}$

$$
=2 \times 12.01+6 \times 1.008+1 \times 16.00
$$

MW C $2_{2} \mathrm{H}_{6} \mathrm{O}=46.07 \mathrm{~g} / \mathrm{mole}$

-Second: calculate the mass percents

$$
\begin{aligned}
& \text { Mass \% C }=100 \times\left(\frac{\text { mass of } \mathrm{C}}{\text { total molar mass }}\right)=100 \times\left(\frac{2 \times 12.01}{46.07}\right)=52.14 \% \\
& \text { Mass \% H }=100 \times\left(\frac{\text { mass of } \mathrm{H}}{\text { total molar mass }}\right)=100 \times\left(\frac{6 \times 1.008}{46.07}\right)=13.13 \% \\
& \text { Mass \% O }=100 \times\left(\frac{\text { mass of O }}{\text { total molar mass }}\right)=100 \times\left(\frac{1 \times 16.00}{46.07}\right)=34.72 \%
\end{aligned}
$$

Note that the mass percentages should add up to 100%.

$$
\text { Mass } \%=\text { Mass } \% \mathrm{C}+\text { Mass } \% \mathrm{H}+\text { Mass } \% \mathrm{O}
$$

$$
=52.14 \%+13.13 \%+34.72 \%=99.99 \%
$$

CHEMISTRY FOR PREPARATORY YEAR STUDENTS

- Ascorbic acid (vitamin C) contains only C, H, and O. Combustion of 1.000 g of Ascorbic acid produced 40.9\% C and 4.5\% H. What is the empirical formula for Ascorbic Acid?
First: calculate the mass percent of Oxygen.
Since the sample contains C, H, and O , then the remaining $100 \%-40.9 \%-4.5 \%=54.6 \%$ is Oxygen

Second: Suppose 100 g of this substance

Steps		\mathbf{C}	\mathbf{H}	\mathbf{O}
$\mathbf{1}$	Mass $/ \mathrm{g}$	40.9	4.5	54.6
$\mathbf{2}$	No. of moles $=\frac{\text { mass }}{\text { molar mass }}$	$\frac{40.9}{12}=3.4$	$\frac{4.5}{1}=4.5$	$\frac{54.6}{16}=3.4$
$\mathbf{3}$	\div smallest number (3.4)	1	1.3	1
$\mathbf{4}$	x by a number to make step 3 integer numbers $(\mathrm{x} 3)$	$1 \times 3=3$	$1.3 \times 3=4$	$1 \times 3=3$
$\mathbf{5}$	Empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$	3 C	4 H	3 O

Empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$

What is the molecular formula if the molecular mass of Ascorbic Acid was founded to be 176 $\mathrm{g} / \mathrm{mole}$?

Molecular Formula $=\left(\frac{\text { Molecular weight of unknown }(\mathrm{g} / \mathrm{mole})}{\text { mass of emperical formula }}\right) \times$ empirical Formula

$$
\begin{aligned}
\text { Molecular Formula } & =\left(\frac{176(\mathrm{~g} / \mathrm{mole})}{3 \times 12+4 \times 1+3 \times 16}\right) \times \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}= \\
& =2 \times \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}
\end{aligned}
$$

- It is used to determine the mass \% for different elements in the compound.

The sample is burned in the presence of excess oxygen which converts all the carbon to carbon dioxide and all the hydrogen to water.
The CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ produced are absorbed in two different stages and their masses determined by measuring the increase in weight of the absorbers.

Ethanol, contains carbon, hydrogen and oxygen. Upon the combustion of a 1.15 g sample of ethanol gives 2.20 g of CO_{2} and $1.35 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. Calculate the mass percent for carbon, Oxygen, and hydrogen.
First: determine the mass of the element (Hydrogen) in naphthalene.

Mass of Hydrogen in the sample $=\frac{1.35 \mathrm{~g}}{18.0 \mathrm{~g} / \mathrm{mole}} \times 2 \mathrm{H}$ atoms $\times 1.0 \mathrm{~g} / \mathrm{mole}$
Mass of Hydrogen in the sample $=0.15 \mathrm{~g}$

Mass of Carbon in the sample $=0.60 \mathrm{~g}$
Mass of Oxygen in the sample $=$ mass of the sample - mass of H - mass of C

$$
=1.15-0.15-0.60=0.40 \mathrm{~g} \text { of oxygen }
$$

Determine the \% of each element:

$$
\begin{aligned}
& \text { Mass \% of Hydrogen }=100 \times \frac{\text { mass of hydrogen }}{\text { Total sample mass }}=100 \times \frac{0.15 \mathrm{~g} \mathrm{H}}{1.15 \mathrm{~g} \mathrm{ethanol}}=13.0 \% \\
& \text { Mass \% of Carbon }=100 \times \frac{\text { mass of Carbon }}{\text { Total sample mass }}=100 \times \frac{0.60 \mathrm{~g} \mathrm{C}}{1.15 \mathrm{~g} \mathrm{ethanol}}=52.2 \% \\
& \text { Mass \% of Oxygen }=100 \times \frac{\text { mass of oxygen }}{\text { Total sample mass }}=100 \times \frac{0.40 \mathrm{~g} \mathrm{O}}{1.15 \mathrm{~g} \text { ethanol }}=34.8 \%
\end{aligned}
$$

Check: total mass \% = mass \% of H + mass \% of C + mass \% of O = 100%
Second: to determine the Empirical formula for ethanol:

Steps		C	H	O
$\mathbf{1}$	Mass $/ \mathrm{g}$	0.60	0.15	0.40
$\mathbf{2}$	No. of moles $=\frac{\text { mass }}{\text { molar mass }}$	$\frac{0.60}{12}=0.05$	$\frac{0.15}{1}=0.15$	$\frac{0.40}{16}=0.025$
$\mathbf{3}$	\div smallest number (0.025)	2	6	1
$\mathbf{4}$	Empirical formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	2 C	6 H	10

Empirical formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ CHEMISTRY For premaroory vearstuents

It is process in which one or more pure substances are converted into one or more different pure substance.
All chemical reactions involve a change in substances and a change in energy.
Neither matter nor energy is created or destroyed in a chemical reaction, only changed.

Chemical equation

- When a chemical reaction occurs, it can be described by an equation.
- This shows the chemicals that react (reactants) on the left-hand side, and the chemicals that they produce (products) on the righthand side.

$$
\text { Reactants } \xrightarrow{\text { Reaction conditions }} \text { Products }
$$

Reaction between hydrogen gas and oxygen gas to produce liquid water

hydrogen gas + oxygen gas \longrightarrow| liquid water |
| :--- |
| $2 \mathrm{H}_{2}(g)$ |
| $+\mathrm{O}_{2}(g)$ |
| CHEMMISTRY FOR PREARATORYYEARSTUDENIS |

Balancing chemical equations

- first write the correct formula for both reactants and products and then balance all of the atoms on the left side of the reaction with the atoms on the right side.

Write the chemical equation which represents the burning of glucose

 in presence of oxygen gas which produces carbon dioxide and water.To answer this question, follow the following steps:

1. Identify the reactants and the products and put an arrow in between.

$$
\text { glucose + oxygen gas } \longrightarrow \quad \text { carbon dioxide + water }
$$

2. Try to figure out the correct formula for the reactants and products, Glucose is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, oxygen gas is O_{2}, carbon dioxide is CO_{2}, and water is $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

3.Count the number of each atom at both sides of the equation:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
(6 \mathrm{C}+12 \mathrm{H}+6 \mathrm{O})+(2 \mathrm{O}) \longrightarrow(1 \mathrm{C}+2 \mathrm{O})+(2 \mathrm{H}+1 \mathrm{O})
$$

Total: $(6 \mathrm{C}+12 \mathrm{H}+8 \mathrm{O}) \longrightarrow(1 \mathrm{C}+2 \mathrm{H}+3 \mathrm{O})$

Balance C first, then H, and finally O:

At the left side there are 6 C atoms and at the right side there are 1 C atom, so multiply CO_{2} by 6 (x 6)

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

At the left side there are 12 H atoms and at the right side there are 2 H atom, So multiply $\mathrm{H}_{2} \mathrm{O}$ by 6 (x 6)

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

At the left side there are 8 O atoms and at the right side there are 18 O atom, So multiply O_{2} by 6 (x 6)

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Recount all atoms again,

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

$$
(6 \mathrm{C}+12 \mathrm{H}+6 \mathrm{O})+(12 \mathrm{O}) \quad(6 \mathrm{C}+12 \mathrm{O})+(12 \mathrm{H}+6 \mathrm{O})
$$

$$
\text { Total: }(6 \mathrm{C}+12 \mathrm{H}+18 \mathrm{O}) \quad(6 \mathrm{C}+12 \mathrm{H}+18 \mathrm{O})
$$

$\mathrm{aA} \longrightarrow \mathrm{bB}$

Type1: calculate the number of moles of unknown (B) and number of moles of A is given:

Use the following formula to calculate the \# moles of B:

$$
\text { number of moles of }(B)=\text { number of moles of }(A) x\left(\frac{b}{a}\right)
$$

Calculate the number of moles of CO_{2} resulted from the reaction of 3.5 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ with excess oxygen according to the equation

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

-Use the formula:

$$
\begin{aligned}
& \text { number of moles of }\left(\mathrm{CO}_{2}\right)=\text { number of moles of }\left(\mathrm{C}_{2} \mathrm{H}_{6}\right) \times\left(\frac{4\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)}{2\left(\mathrm{CO}_{2}\right)}\right) \\
& \text { number of moles of }\left(\mathrm{CO}_{2}\right)=3.5 \text { moles of }\left(\mathrm{C}_{2} \mathrm{H}_{6}\right) \times\left(\frac{4\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)}{2\left(\mathrm{CO}_{2}\right)}\right)
\end{aligned}
$$

Number of moles of $\mathrm{CO}_{2}=7.0$ moles

$\mathrm{aA} \longrightarrow \mathrm{bB}$

Type 2: calculate the mass of unknown (B) and mass of A is given:

Use the following formula to calculate the mass of B:

$$
\text { mass of }(B)=\left(\frac{\text { mass of }(A)}{\text { Molar mass of }(A)}\right) \times\left(\frac{b}{a}\right) \times \text { Molar mass of (B) }
$$

How many grams of water are produced when 7.00 grams of oxygen react with an excess of hydrogen according to the reaction shown below?

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \cdots--->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

\checkmark The "excess" reactant has nothing to do with the problem.
\checkmark Identify which is the "given" and which is the unknown.

$$
\begin{array}{rr}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & ---\gg 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
10 \mathrm{~g} & ?
\end{array}
$$

- Use the formula:

$$
\begin{aligned}
& \text { mass of }\left(\mathrm{H}_{2} \mathrm{O}\right)=\left(\frac{\text { mass of } \mathrm{O}_{2}}{\text { Molar mass of } \mathrm{O}_{2}}\right) \times\left(\frac{2\left(\mathrm{H}_{2} \mathrm{O}\right)}{1\left(\mathrm{O}_{2}\right)}\right) \times \text { Molar mass of }\left(\mathrm{H}_{2} \mathrm{O}\right) \\
& \text { mass of }\left(\mathrm{H}_{2} \mathrm{O}\right)=\left(\frac{7.0 \mathrm{~g}}{32 \mathrm{~g} / \text { mole }}\right) \times\left(\frac{2\left(\mathrm{H}_{2} \mathrm{O}\right)}{1\left(\mathrm{O}_{2}\right)}\right) \times 18 \mathrm{~g} / \text { mole }
\end{aligned}
$$

Mass of $\mathrm{H}_{2} \mathrm{O}=7.89 \mathrm{~g}$
Calculate the mass of chlorine that reacts with 4.770 g of hydrogen to form hydrogen chloride according the following equation:
-Use the formula:

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

$$
\begin{aligned}
& \text { mass of }\left(\mathrm{Cl}_{2}\right)=\left(\frac{\text { mass of } \mathrm{H}_{2}}{\text { Molar mass of } \mathrm{H}_{2}}\right) \times\left(\frac{1\left(\mathrm{H}_{2}\right)}{1\left(\mathrm{Cl}_{2}\right)}\right) \times \text { Molar mass of }\left(\mathrm{Cl}_{2}\right) \\
& \text { mass of }\left(\mathrm{Cl}_{2}\right)=\left(\frac{4.770 \text { g of } \mathrm{H}_{2}}{2.0 \mathrm{~g} / \text { mole }}\right) \times\left(\frac{1\left(\mathrm{H}_{2}\right)}{1\left(\mathrm{Cl}_{2}\right)}\right) \times 71.0 \mathrm{~g} / \text { mole }
\end{aligned}
$$

Mass of $\mathrm{Cl}_{2}=169.3 \mathrm{~g}$

When two substances A and B are present in random quantities and react with each other to produce D, the first consumed one is the limiting reagent and the second one is remained in excess.

It is easy to identify this type of problem, because the mass of two reactants are given.

To determine the limiting reactant from given moles of substance, do the followings:
1- Calculate the number of moles for each reactant.
2- Determine the ratio, by divide the number of moles for each reactant by its coefficient.
3- The reactant with the smallest ratio is the limiting reactant.

If 2.0 moles of NO were mixed with 2.0 moles of O_{2} to react as:

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)
$$

Determine the limiting reactant.

To determine the limiting reactant, use the following table:

Steps		2NO	$1 \mathrm{O}_{2}$
1	No. of moles	2.0	2.0
2	Coefficient	2	1
3	Ratio	$\frac{2.0}{2}=1.0$	$\frac{2.0}{1}=2.0$
4	Look for the smallest no.	Sminaillerst	largest

If 400.0 g Fe were mixed with $300.0 \mathrm{~g} \mathrm{O}_{2}$ to react as:
 $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
 Determine the limiting reactant?

To determine the limiting reactant, use the following table:

Steps		$\mathbf{4 ~ F e}$	$\mathbf{3 \mathbf { O } _ { \mathbf { 2 } }}$
$\mathbf{1}$	Mass $/ \mathrm{g}$	400.0	300.0
$\mathbf{2}$	No. of moles $=\frac{\text { mass }}{\text { molar mass }}$	$\frac{400.0}{56.0}=7.1$	$\frac{300.0}{32.0}=9.4$
$\mathbf{3}$	Coefficient	4	3
$\mathbf{4}$	Ratio	$\frac{7.1}{4}=1.8$	$\frac{9.4}{3}=3.1$
$\mathbf{5}$	Look for the smallest no.	Nimaniliasily	largest

Chemicol Rection Yield

- For any chemical reaction there are theoretical and actual (practical) yield.
- Theoretical yield (T.Y.) is the amount of product that would result if all the limiting reactant reacted.
- Actual yield (A.Y.) is the amount of product actually obtained from a reaction.
- Due to many factors can affected on the reaction, A.Y. is always less than T.Y.
- Percent yield is the efficient for a given reaction:

$$
\% \text { yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100
$$

The actual yield most of the time, is the number before any of the following words: collected, obtained, isolated, produced, separated, formed.....etc.

How many grams of $\mathrm{SF}_{4}(\mathrm{~g})$ can theoretically be prepared from 6.0 g of $\mathrm{SCl}_{2}(\mathrm{~g})$ and 35.0 g of $\mathrm{NaF}(\mathrm{s})$?

$$
3 \mathrm{SCl}_{2}(\mathrm{~g})+4 \mathrm{NaF}(\mathrm{~s}) \rightarrow \mathrm{SF}_{4}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{I})+4 \mathrm{NaCl}(\mathrm{~s})
$$

- Step 1: determine the limiting reactant

Steps		$3 \mathrm{SCl}_{2}$	4 NaF
1	Mass /g	6.0	35.0
2	Molar mass ($\mathrm{g} / \mathrm{mole}$)	103.0	42.0
3	No. of moles $=\frac{\text { mass }}{\text { molarmass }}$	$\frac{6.0}{103.0}=0.06$	$\frac{35.0}{42.0}=0.83$
4	Coefficient	3	4
5	Ratio	$\frac{0.06}{2}=0.03$	$\frac{0.83}{4}=0.21$
6	Look for the smallest no.	smallest	largest

SCl_{2} is the limiting reactant

- Step 2: compare between the limiting reactant (known) and the unknown product, to determine the theoretical yield.

$$
\text { mass of } C=\frac{\text { mass of } A}{\text { molar mass of } A} \times \text { molar mass of } C \times \frac{c}{a}
$$

In this case, the unknown C is the SF_{4}, the known A is SCl_{2} (Limiting Reactant), a equal 3 and c equal 1 .
Use the formula: mass of $\mathrm{SF}_{4}=\frac{\text { mass of } \mathrm{SCl}_{2}}{\text { molar mass of } \mathrm{SCl}_{2}} \times$ molar mass of $\mathrm{SF}_{4} \times \frac{1}{3}$ mass of $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}=\frac{6.0 \mathrm{~g} \text { of } \mathrm{SCl}_{2}}{103.0 \mathrm{~g} /{\mathrm{mole} \mathrm{of} \mathrm{SCl}_{2}} \times 108.0 \mathrm{~g} / \mathrm{mole} \text { of } \mathrm{SF}_{4} \times \frac{1}{3}=2.45 \mathrm{~g} \mathrm{~g}, \mathrm{~m}^{2}}$ So, the theoretical yield for the SF_{4} equals 2.45 g .

In an experiment, the actual yield was 6.35 g and the theoretical yield was 8.3 g what is the percentage yield of the product?

Use the formula:

$$
\% \text { yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100
$$

$\%$ yield $=\frac{6.35}{8.3} \times 100=76.5 \%$

Many tons of urea $\left(\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right)$ are produced every year in fertilizer industries. When 119.0 g ammonia react with $80.0 \mathrm{~g} \mathrm{CO}_{2}$ as the equation:

$$
2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}(s)+\mathrm{H}_{2} \mathrm{O}
$$

and produce 100.0 g urea, calculate \% yield?

Step 1: determine the limiting reactant

Steps		$\mathbf{2} \mathbf{N H}_{\mathbf{3}}$	$\mathbf{1} \mathbf{C O}_{\mathbf{2}}$
$\mathbf{1}$	Mass $/ \mathrm{g}$	119.0	80.0
$\mathbf{2}$	Molar mass	17.0	44.0
$\mathbf{3}$	No. of moles $=\frac{\text { mass }}{\text { molar mass }}$	$\frac{\mathbf{1 1 9 . 0}}{\mathbf{1 7 . 0}}=7.0$	$\frac{\mathbf{8 0 . 0}}{\mathbf{4 4 . 0}}=\mathbf{1 . 8}$
$\mathbf{4}$	Coefficient	$\mathbf{2}$	$\mathbf{1}$
$\mathbf{5}$	Ratio	$\frac{\mathbf{7 . 0}}{\mathbf{2}}=\mathbf{3 . 5}$	$\frac{\mathbf{1 . 8}}{\mathbf{1}}=\mathbf{1 . 8}$
$\mathbf{6}$	Look for the smallest no.	largest	$\mathbf{s m a l l e s t}$

CO_{2} is the limiting reactant

Step 2: compare between the limiting reactant (known) and the unknown product, to determine the theoretical yield.

$$
\text { mass of } C=\frac{\text { mass of } A}{\text { molar mass of } A} \times \text { molar mass of } C \times \frac{c}{a}
$$

In this case, the unknown C is the urea $\left[\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right]$, the known A is CO 2 (Limiting Reactant), a equal 1 and cequal 1.

$$
\begin{gathered}
\text { mass of } \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}=\frac{\text { mass of } \mathrm{CO}_{2}}{\text { molar mass of } \mathrm{CO}_{2}} \times \text { molar mass of } \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2} \times \frac{1}{1} \\
\text { mass of } \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}=\frac{80.0 \mathrm{~g} \text { of } \mathrm{CO}_{2}}{44.0 \mathrm{~g} / \text { mole of } \mathrm{CO}_{2}} \times 60.0 \mathrm{~g} / \text { mole of } \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2} \times \frac{1}{1}=109.0 \mathrm{~g}
\end{gathered}
$$

So, the theoretical yield for the urea equal 109.0 g
Step 3: determine the \% yield
Use the formula:

$$
\% \text { yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100
$$

According to the problem, 100.0 g of the urea were produced (actual yield).

$$
\% \text { yield }=\frac{100.0}{109.0} \times 100=91.7 \%
$$

- A solution is a homogeneous mixture of 2 or more substances (gas, liquid, or solid) in a single phase and it contains a solute (the substance that is dissolved in a solvent) and a solvent (a liquid in which a substance is dissolved).
- When the solvent is water, the solution is said to be aqueous (aq).

Concentration of solution can be expressed in different ways:

CHEMISTRY For prparatory year subens

Calculate the mass required to prepare a 250 mL 0.01 M

solution of KMnO_{4} ?

Convert 250 ml to $\mathrm{L}(250 / 1000=0.250 \mathrm{~L})$
Using the formula:
\# moles $=$ molarity x volume $=0.01 \mathrm{~mol} / \mathrm{L} \times 0.250 \mathrm{~L}$ $=0.0025 \mathrm{~mol}$
Mass = \# moles x molar mass

Molar mass of $\mathrm{KMnO4}=158.0 \mathrm{~g} / \mathrm{mole}$
Mass of KMnO_{4} needed $=0.0025 \mathrm{~mol} \times 158.0 \mathrm{~g} / \mathrm{mole}$ $=0.395 \mathrm{~g}$ of KMnO_{4}
So, weigh 0.395 g of KMnO_{4} and dissolve them in 250 ml volumetric flask.

If a solution contains 0.035 moles solute in 2.0 L of water, what is the molarity?
Molarity (M) = moles of solute $/$ volume of solution (liter) $=0.035$ moles $/ 2.0 \mathrm{~L}=1.8 \times 10^{-2} \mathrm{M}$

Dilution of concentrated solutions

\# fish $=5$
Volume = 1 L
Concentration = 5 fishes/1 L

- If you have 5 fishes in a 1 L tank and you moved them in another 2 L tank, what will happened?
- The number of the fishes remain the same (5 fishes), but their concentrations changes.
- The fishes are the moles, when you put same number of moles in different volumes, the number of moles stay the same, but the concentrations changed.

DILUTION OF*CONCENTRATED SOLUTIONS

- When we dilute a solution by mixing it with more solvent, the amount of solute present does not change, but the total volume and the concentration of the solution do change.
- To calculate the molarity after dilution, we can use the following formula:

$\left(\right.$ Molarity \times Volume $_{\text {before dilution }}=(\text { Molarity } \times \text { Volume })_{\text {after dilutio }}$

$$
M_{1} \times V_{1}=M_{2} \times V_{2}
$$

How many milliliters of $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are required to prepare 1.00 L of a 0.900 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
Using the formula: $\mathrm{M}_{1} \times \mathrm{V}_{1}=\mathrm{M}_{2} \times \mathrm{V}_{2}$
$\mathrm{M}_{1}=18.0 \mathrm{M}, \mathrm{V}_{1}=$?? \quad And $\mathrm{M}_{2}=0.900 \mathrm{M}, \mathrm{V}_{2}=1.00 \mathrm{~L}$
$\begin{array}{r}\mathrm{So} \\ \mathrm{n}= \\ \hline\end{array}$

$$
\mathrm{V}_{1}=\frac{\mathrm{M}_{2} \times \mathrm{V}_{2}}{\mathrm{M}_{1}}=\frac{0.900 \mathrm{M} \mathrm{x} 1.00 \mathrm{~L}}{18.0 \mathrm{M}}=0.0500 \mathrm{~L}=50.0 \mathrm{~mL}
$$

CHEMISTRY For prepratiory vars subents

What volume of 1.5 M HCl is required to react with 34.6 mL of 2.44 M NaOH ?

$$
\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{ag})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

First calculate the number of moles of NaOH :
2.44 M X (34.6/1000)L $=0.0844$ mole NaOH

From the chemical equation:

$\mathrm{NaOH}_{(\mathrm{aq)}}+\mathrm{HCl}_{(\mathrm{ag})} \rightarrow \mathrm{NaCl}_{(\text {(qq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
One mole of HCl reacts with one mole of NaOH 0.0844 mole HCl reacts with 0.0844 mole NaOH

Number of moles of $\mathrm{HCl}=$ molarity of HCl X volume of solution
0.0844 moles $\mathrm{HCl}=1.5 \mathrm{M} \mathrm{XV}$

The volume of $\mathrm{HCl}=0.056 \mathrm{~L}=56 \mathrm{~mL}$

According to the reaction:

$$
\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

What volume of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ is required to react with 41.77 mL of $0.1603 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?

From the chemical equation:
$\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq)}}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
2 Moles of HNO_{3} react with one mole of $\mathrm{Ba}(\mathrm{OH})_{2}$
\# moles of $\mathrm{Ba}(\mathrm{OH})_{2}=$ molarity X volume of solution $=0.1603 \mathrm{M} \mathrm{X} \mathrm{(41.77/1000)} \mathrm{~L}=6.696 \times 10^{-3} \mathrm{~mol}$

The moles of HNO_{3} which reacted $=2 \times 6.696 \times 10^{-3}=13.39 \times 10^{-3} \mathrm{~mol}$
\# moles of $\mathrm{HNO}_{3}=$ molarity X volume of solution
$13.39 \times 10^{-3} \mathrm{~mol}=0.5 \mathrm{M} \mathrm{XV}$

$$
\mathrm{V}=0.0417 \mathrm{~L}=41.7 \mathrm{~mL}
$$

